

AutoControl: Automated Control of MultipleVirtualized Resources

Pradeep Padala, Karen Hou, Xiaoyun Zhu*, Mustfa Uysal†, Zhikui Wang†, Sharad Singhal†, Arif Merchant†, Kang G. Shin University of Michigan, VMware* and HP Labs†

Typical scenario in shared infrastructures

Application requirements

Web search

Fast searches

✓ Low response time

Data mining

Analyze large data

✓ High throughput

✓ QoS differentiation 3:1

Hosting applications

Physical partitioning

Virtual data center

app1 app1 db
Node I

app3

Node III

app2

Node IV

- × Wasteful
- Difficult to manage

- ✓ Improved utilization
- ✓ Reduced costs
- ✓ High flexibility

Problem: How to allocate resources?

Approach I: Work-conserving mode

app1 app2 app3 app4

Low-level schedulers

CPU, Storage, Network, Memory

Node

All applications can use as much resources as they require

- Greedy applications cause SLO (service level objective) violations
- How to prioritize? no differentiation
- How to use scheduler mechanisms to meet targets?

Approach II: Static allocation

Finding the right share is hard!

Approach III: Migration

- Good choice for long term overload
- Poor choice for bursty loads
- Adds overhead to an already overloaded node
- SLO violations while being migrated

Automated Control – an example

Previous work

- Distributed resource allocation
 - AronSIGMETRICS00, ChaseSOSP01, ShenOSDI02
 - Orthogonal to our approach
- Low-level schedulers
 - Credit, CFQ, SFQ, WaldspurgerOSDI02, GulatiTR07
 - Policy vs. Mechanism
- QoS mechanisms
 - ChandralWQOS03, UrgaonkarlCAC05
 - Developed for a single resource or application
- Control theory based
 - AbdelZaherTPDS02, HellersteinBook04, KarlssonIWQOS04
 - Applied in other scenarios

Outline

- Motivation
- Background
- Idea

- Modeling
- Controller Design
 - Application Controller
 - Node Controller

- Evaluation
 - Synthetic workloads
 - CPU and Disk bottlenecks

AutoControl system – 1,000ft view

Every control interval

App Controller

Figures out the resource share required for a single app to meet its targets

Node Controller

Arbitrates among multiple applications
All node controllers are independent

CPU and disk schedulers

Final shares are set

Application controller

Why is modeling hard?

Non linear relationships

Time

Multiple resources

Bottleneck shifts

Multi-tier applications

Solution: Dynamic black box modeler

- ✓ Nonlinearity approximated using linear equations
- ✓ Multiple resources & multi-tier apps modeled with Multi Input Multi Output (MIMO) model

✓ Parameters (a1... b1 ...) updated recursively (Recursive Least Squares RLS)

AppController internals Control as optimization

$$y = f(u_k)$$
 $y_{ref} = \text{target}$
 $u_k = \begin{pmatrix} cpu \\ dsk \end{pmatrix}$
Kth time interval

- ✓ Minimize cost
- \checkmark Quadratic solvers to find $\,{\cal U}_k$

Simplified Linear Quadratic Regulator formulation

Gory details: [CDC'07]

Control with consolidation

Control for data center scale

- Why not centralized controller? variable explosion
- Why not combine app and node controllers?
 - Applications may span multiple nodes

- One AppController for application
- One NodeController per node

Distributed control

Experiments with 40 nodes on Emulab are successful

Outline

- Motivation
- Background
- Idea
- Modeling
- Controller Design
 - Application Controller
 - Node Controller

- Evaluation
 - Synthetic workloads
 - CPU and Disk bottlenecks

Evaluation

Applications

- RUBiS: eBay style auction benchmark
- TPC-W: Transactional web e-Commerce benchmark
- Smedia: Custom built secure media server

Workloads

- Synthetic
- CPU and disk bottlenecks
- Evaluation questions
 - Can the controller meet targets?
 - Can it identify bottlenecks over time in different tiers and fix them?
 - Can it identify bottlenecks of different resources? (ex. CPU/Disk)

Experimental setup

Targets

RUBiS – 100 req/sec

Smedia1 – 1000 Kbytes/sec

Smedia2 – 3000 Kbytes/sec

Smedia3 – 15000 Kbytes/sec

Smedia4 – 10000 Kbytes/sec

Node 1: CPU bottleneck

Node 2: DISK -> CPU bottleneck

Node 1 & 2: RUBiS performarnce

Experiment summary – average error

Error =
$$\frac{\|y - y_{ref}\|}{yref} *100$$

Арр	Work- conserving	Static	AutoControl
RUBiS	13.8%	38.3%	8.2%
Smedia1	100%	12.1%	4.3%
Smedia2	26.2%	9.6%	2.2%
Smedia3	44.3%	61.4%	10.1%
Smedia4	24.6%	47.5%	9.3%

AutoControl achieves <=10% error

Limitations and future work

- Modeling challenges
 - Non linear, fast changing workloads create problems
 - Combining white-box and black-box models
- Actuator and sensor behavior
 - Inaccuracies in measurements may lead to inaccurate models.
 - We are limited by what the scheduler can do
- Network and memory control
 - Earlier efforts with network control were unsuccessful
 - Preliminary memory control [IM'09 min-conference]
- Integrating with migration

Summary

Automated Control of Multiple Virtualized Resources

- √ Feedback control can be successfully applied to computer systems
 - Dynamic black box modeler captures complex dynamics
 - AppController can compute shares to meet targets for a single app
 - NodeController arbitrates among competing apps
- ✓ Distributed architecture that scales well

ppadala@umich.edu