. Got control ?

Z

A

AutoControl: Automated Control of
MultipleVirtualized Resources

Pradeep Padala, Karen Hou, Xiaoyun Zhu*, Mustfa Uysalt,
Zhikui WangT, Sharad Singhalt, Arif MerchantT, Kang G. Shin

University of Michigan, VMware* and HP LabsT

Typical scenario in shared infrastructures

Web search \ / Data mining

Shared
Infrastructure

© Pradeep Padala 2009

Application requirements

Web search Data mining

Fast searches Analyze large data

v Low response time v High throughput

v' QoS differentiation 3:1
1

© Pradeep Padala 2009

Hosting applications

Physical partitioning Virtual data center

{appl) (appl’
f web JL db
Node | Node Il

4 N\)

app2 app3
Node Il | |[Node IV

v Improved utilization

x Wasteful v Reduced costs
x Difficult to manage v'High flexibility

Problem: How to allocate resources?

© Pradeep Padala 2009

Approach I: Work-conserving mode

{CPU, Storage, Network, Memory}

[appJJ [appZ] [app?J [app4] All applications can use

L ow-level schedulers as much resources as

they require

Node

* Greedy applications cause SLO (service level

o

0

jective) violations

ow to prioritize? — no differentiation

ow to use scheduler mechanisms to meet targets?

© Pradeep Padala 2009

Approach Il: Static allocation

Bursty load Poor respo Wasted resources

5

N

|I Peak
|

Number of CPUs

| I I [,
1 ¥ : Average

Time

Finding the right share is hard!

© Pradeep Padala 2009

Approach Ill: Migration

. 100 -
2
Virtualization @ Virtualization N 50 - < >
Node | Node Il g Performance loss
)
Overloaded Underloaded 5 0 I I I
node node]

» Good choice for long term overload

* Poor choice for bursty loads

» Adds overhead to an already overloaded node

« SLO violations while being migrated

© Pradeep Padala 2009

Automated Control —an example

Automatically set resource shares to
meet application targets in
changing conditions

Previous work

* Distributed resource allocation

— AronSIGMETRICS00, ChaseSOSPO01, ShenOSDI02
— Orthogonal to our approach

* | ow-level schedulers

— Credit, CFQ, SFQ, WaldspurgerOSDI02, GulatiTRO7
— Policy vs. Mechanism

* QoS mechanisms

— ChandralWwQOS03, UrgaonkarlCACO05

— Developed for a single resource or application
* Control theory based

— AbdelZaherTPDSO02, HellersteinBook04,KarlssonlWQOS04
— Applied in other scenarios

© Pradeep Padala 2009

* Motivation
* Background
* |dea

« Modeling

* Controller Design

— Application Controller
— Node Controller

e Evaluation

— Synthetic workloads
— CPU and Disk bottlenecks

© Pradeep Padala 2009

AutoControl system — 1,000ft view

P e < !
i appl appz App Controllers Node Controller i
i VM VM Sensors Disk I/O scheduler Domo i
s e
! |
i [CPU] [DISK]
e Physical node
Every control interval
App Controller Figures out the resource share required for a

single app to meet its targets

Arbitrates among multiple applications

Node Controller All node controllers are independent

CPU and disk schedulers Final shares are set

© Pradeep Padala 2009

Application controller

Model: metric = f(share) App
performance

AppController | —— Targets

\ 4
Requested

Shares

© Pradeep Padala 2009

Why is modeling hard?

: Non linear relationships

—CPU utilization Multiple resources

Bottleneck shifts

Multi-tier applications

() 6 -

= 5 - —-700 clients

=S 4 -

v 3

(7] 2 |

S 1

%0

(a2 30 40 50 60 70

CPU allocation

120 -

8100 N —Disk utilization

s 30

©

N 60

S 40

X 20
OIIIIIIII—IIIIIITIIIIIIIIIIIIII

Time
© Pradeep Padala 2009

Solution: Dynamic black box modeler

v Nonlinearity approximated using
linear equations

v Multiple resources & multi-tier apps
modeled with Multi Input Multi Output
(MIMO) model

Linear approx.

web CPUp—1 dbcpuy_4
— (al b1 b2) b3 b4 ()
Ve = (@) (i) +) webdsk,_.) T P3P gpask,

| T

Current performance Prev performance Resource shares
First order

v Parameters (a1... b1 ...) updated recursively
(Recursive Least Squares RLS)

© Pradeep Padala 2009

AppController internals

Control as optlmlzatlon

Aglgressmn facEcirs _ f (uk) ,
Cost = W _|_ Qlluk R uk—lll2 yref — tarQEt
cpu :

Track target Don’t go wild T [dsk]

L . Ki"time interval
v Minimizecost ol

v Quadratic solvers to find Uk

Simplified Linear Quadratic Regulator formulation

Gory details: [CDC'07]

© Pradeep Padala 2009

Control with consolidation

App Controller | App Controller I App Controller Il
D+ o+ e R
shares

~. 1 -

> tOtl Node controller | SRAYEIZation similar to
AppController

l S, +S,+S;+..+5 <S

Max

Final share
values

© Pradeep Padala 2009

Control for data center scale

* Why not centralized controller? — variable explosion
« Why not combine app and node controllers?

o Applications may span multiple nodes

Node | Node Il Node Il
(app1 web) (app1 db] _apps |
[app2] [app3web] [app3 db]

* One AppController for application

* One NodeController per node

© Pradeep Padala 2009

Distributed control

Sensors Performance targets

=
controller,

Requested

allocation
Nodel Node? e e
Controller Controller e
/ \ Final allocation
LcPU] (DSK] (CPU) P‘jDSK
Node? Nodes

Experiments with 40 nodes on Emulab are successful

© Pradeep Padala 2009

* Motivation
* Background
* |dea

« Modeling

* Controller Design

— Application Controller
— Node Controller

e Evaluation

— Synthetic workloads
— CPU and Disk bottlenecks

© Pradeep Padala 2009

Evaluation

 Applications
o RUBIS: eBay style auction benchmark
o TPC-W: Transactional web e-Commerce benchmark
o Smedia: Custom built secure media server

» Workloads
o Synthetic
o CPU and disk bottlenecks
 Evaluation questions
o Can the controller meet targets?
o Can it identify bottlenecks over time in different tiers and fix them?
o Can it identify bottlenecks of different resources? (ex. CPU/Disk)

© Pradeep Padala 2009

Experimental setup

Node | Node Il Tareet

, argets

rubis wep (S i< b | RUBIS — 100 reqg/sec

)) Smedial — 1000 Kbytes/sec

' smedial [Smedia3] Smedia2 — 3000 Kbytes/sec

) i Smedia3 — 15000 Kbytes/sec

smedia2 [Smedia4] Smedia4 — 10000 Kbytes/sec

Node | cpu Bottleneck
Node I Bottleneck cpu Bottleneck

0 300 . 600

Time

© Pradeep Padala 2009

Node 1: CPU bottleneck

—+—AutoControl —Target Work-conserving —<Static

Throughput

(KBytes/sec)
5 S
S 8

O [[

4000 -
+ g o e AN e = Al A ATAREA
L \
b UV
S 3 2000 4 V¥
e 5. 1000
c i
- Z

0

1 6 11 16 21
Time interval (every 10 secs)

| Smedia2

Node 2: DISK -> CPU bottleneck

25000 -

o -—-AutoControl
—Target
12223 T Work-conserving
5000 _u < Disk bottleneck o
X SRR
20000 |

15000

10000 CPU
5000 - bottleneck
0

1 11 21 31 41 51 61 /1 31
Time interval (every 10 secs) @

Throughput (reqs/sec)

Node 1 & 2: RUBIS performarnce

180
160
140
120
100

——AutoControl —Target
Work-conserving -=<Static

11 21 31 41 51 61 71 81 91

Time interval (every 10 secs)

RUBIS
© Pradeep Padala 2009

Experiment summary — average error

AutoControl achieves <=10% error

Error = Hy B yref ‘*100
yref
App Work- Static AutoControl
conserving
RUBIS 13.8% 38.3%
Smedial 100% 12.1%
Smedia2 26.2% 9.6%
Smedia3 44.3% 61.4%
Smedia4 24.6% 47.5%

© Pradeep Padala 2009

Limitations and future work

- Modeling challenges
o Non linear, fast changing workloads create problems
o Combining white-box and black-box models
 Actuator and sensor behavior
o Inaccuracies in measurements may lead to inaccurate models.
o We are limited by what the scheduler can do
* Network and memory control
o Earlier efforts with network control were unsuccessful
o Preliminary memory control [IM'09 min-conference]

* Integrating with migration

© Pradeep Padala 2009

Summary

Automated Control of Multiple Virtualized Resources

v'Feedback control can be successfully applied to computer systems
o Dynamic black box modeler captures complex dynamics
o AppController can compute shares to meet targets for a single app
o NodeController arbitrates among competing apps

v'Distributed architecture that scales well

App App App
Controller Controller Controller

|
|
|
|
Resource
Goals > \\\/ :' Shares
:
|
|

Node Controller Node Controller

ppadala@umich.edu

© Pradeep Padala 2009

