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Typical scenario in shared infrastructures

Web search \ / Data mining

Shared
Infrastructure
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Application requirements

Web search Data mining

Fast searches Analyze large data

v Low response time v High throughput

v' QoS differentiation 3:1
1

© Pradeep Padala 2009



Hosting applications

Physical partitioning Virtual data center

{appl ) (appl’
f web JL db
Node | Node Il

4 N\ )

app2 app3
Node Il | |[Node IV

v Improved utilization

x Wasteful v Reduced costs
x Difficult to manage v'High flexibility

Problem: How to allocate resources?
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Approach I: Work-conserving mode

{CPU, Storage, Network, Memory}

[appJJ [appZ] [app?J [app4] All applications can use

L ow-level schedulers as much resources as

they require

Node

* Greedy applications cause SLO (service level

o

0

jective) violations

ow to prioritize? — no differentiation

ow to use scheduler mechanisms to meet targets?
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Approach Il: Static allocation

Bursty load Poor respo Wasted resources

5

N

|I Peak
|

Number of CPUs

| I I [ ,
1 ¥ : Average

Time

Finding the right share is hard!
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Approach Ill: Migration

. 100 -
2
Virtualization @ Virtualization N 50 - < >
Node | Node Il g Performance loss
)
Overloaded Underloaded 5 0 I I I
node node ]

» Good choice for long term overload

* Poor choice for bursty loads

» Adds overhead to an already overloaded node

« SLO violations while being migrated
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Automated Control —an example

Automatically set resource shares to
meet application targets in
changing conditions




Previous work

* Distributed resource allocation

— AronSIGMETRICS00, ChaseSOSPO01, ShenOSDI02
— Orthogonal to our approach

* | ow-level schedulers

— Credit, CFQ, SFQ, WaldspurgerOSDI02, GulatiTRO7
— Policy vs. Mechanism

* QoS mechanisms

— ChandralWwQOS03, UrgaonkarlCACO05

— Developed for a single resource or application
* Control theory based

— AbdelZaherTPDSO02, HellersteinBook04,KarlssonlWQOS04
— Applied in other scenarios
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* Motivation
* Background
* |dea

« Modeling

* Controller Design

— Application Controller
— Node Controller

e Evaluation

— Synthetic workloads
— CPU and Disk bottlenecks
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AutoControl system — 1,000ft view

P e < !
i appl appz App Controllers Node Controller i
i VM VM Sensors Disk I/O scheduler Domo i
s e
! |
i [ CPU ] [ DISK ]
e Physical node
Every control interval
App Controller Figures out the resource share required for a

single app to meet its targets

Arbitrates among multiple applications

Node Controller All node controllers are independent

CPU and disk schedulers Final shares are set
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Application controller

Model: metric = f(share) App
performance

AppController | —— Targets

\ 4
Requested

Shares
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Why is modeling hard?

: Non linear relationships

—CPU utilization Multiple resources

Bottleneck shifts

Multi-tier applications
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Solution: Dynamic black box modeler

v Nonlinearity approximated using
linear equations

v Multiple resources & multi-tier apps
modeled with Multi Input Multi Output
(MIMO) model

Linear approx.

web CPUp—1 dbcpuy_4
— (al b1 b2 ) b3 b4 ( )
Ve = (@) (i) + ) webdsk,_.) T P3P gpask,

| T

Current performance Prev performance Resource shares
First order

v Parameters (a1... b1 ...) updated recursively
(Recursive Least Squares RLS)
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AppController internals

Control as optlmlzatlon

Aglgressmn facEcirs _ f (uk) ,
Cost = W _|_ Qlluk R uk—lll2 yref — tarQEt
cpu :

Track target Don’t go wild T [dsk]

L . Ki"time interval
v  Minimizecost ol

v Quadratic solvers to find Uk

Simplified Linear Quadratic Regulator formulation

Gory details: [CDC'07]
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Control with consolidation

App Controller | App Controller I App Controller Il
D+ o+ e R
shares

~. 1 -

> tOtl Node controller | SRAYEIZation similar to
AppController

l S, +S,+S;+..+5 <S

Max

Final share
values
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Control for data center scale

* Why not centralized controller? — variable explosion
« Why not combine app and node controllers?

o Applications may span multiple nodes

Node | Node Il Node Il
(app1 web) (app1 db] _apps |
[ app2 ] [app3web] [app3 db]

* One AppController for application

* One NodeController per node
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Distributed control

Sensors Performance targets

=
controller,

Requested

allocation
Nodel Node? e e
Controller Controller e
/ \ Final allocation
LcPU] (DSK] (CPU ) P‘jDSK
Node? Nodes

Experiments with 40 nodes on Emulab are successful

© Pradeep Padala 2009



* Motivation
* Background
* |dea

« Modeling

* Controller Design

— Application Controller
— Node Controller

e Evaluation

— Synthetic workloads
— CPU and Disk bottlenecks
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Evaluation

 Applications
o RUBIS: eBay style auction benchmark
o TPC-W: Transactional web e-Commerce benchmark
o Smedia: Custom built secure media server

» Workloads
o Synthetic
o CPU and disk bottlenecks
 Evaluation questions
o Can the controller meet targets?
o Can it identify bottlenecks over time in different tiers and fix them?
o Can it identify bottlenecks of different resources? (ex. CPU/Disk)
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Experimental setup

Node | Node Il Tareet

, argets

rubis wep (S i< b | RUBIS — 100 reqg/sec

) ) Smedial — 1000 Kbytes/sec

' smedial [Smedia3] Smedia2 — 3000 Kbytes/sec

) i Smedia3 — 15000 Kbytes/sec

smedia2 [Smedia4] Smedia4 — 10000 Kbytes/sec

Node | cpu Bottleneck
Node I Bottleneck cpu Bottleneck

0 300 . 600

Time
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Node 1: CPU bottleneck

—+—AutoControl —Target Work-conserving —<Static

Throughput
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Node 2: DISK -> CPU bottleneck

25000 -

o -—-AutoControl
—Target
12223 T Work-conserving
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Throughput (reqs/sec)

Node 1 & 2: RUBIS performarnce

180
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——AutoControl —Target
Work-conserving -=<Static
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Time interval (every 10 secs)

RUBIS
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Experiment summary — average error

AutoControl achieves <=10% error

Error = Hy B yref ‘*100
yref
App Work- Static AutoControl
conserving
RUBIS 13.8% 38.3%
Smedial 100% 12.1%
Smedia2 26.2% 9.6%
Smedia3 44.3% 61.4%
Smedia4 24.6% 47.5%
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Limitations and future work

- Modeling challenges
o Non linear, fast changing workloads create problems
o Combining white-box and black-box models
 Actuator and sensor behavior
o Inaccuracies in measurements may lead to inaccurate models.
o We are limited by what the scheduler can do
* Network and memory control
o Earlier efforts with network control were unsuccessful
o Preliminary memory control [IM'09 min-conference]

* Integrating with migration
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Summary

Automated Control of Multiple Virtualized Resources

v'Feedback control can be successfully applied to computer systems
o Dynamic black box modeler captures complex dynamics
o AppController can compute shares to meet targets for a single app
o NodeController arbitrates among competing apps

v'Distributed architecture that scales well

App App App
Controller Controller Controller

|
|
|
|
Resource
Goals > \\\/ :' Shares
:
|
|

Node Controller Node Controller

ppadala@umich.edu
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