
Got control ?

AutoControl: Automated Control of

MultipleVirtualized Resources

Pradeep Padala, Karen Hou, Xiaoyun Zhu*, Mustfa Uysal†,

Zhikui Wang†, Sharad Singhal†, Arif Merchant†, Kang G. Shin

University of Michigan, VMware* and HP Labs†

Typical scenario in shared infrastructures

Data Center

Shared

infrastructure

Web search Data mining

Application requirements

Fast searches Analyze large data

 Low response time  High throughput

 QoS differentiation 3:1

Web search Data mining

Hosting applications

app1

web

Virtualization

app1

db

app2 app3

Node I Node II

Node III Node IV

Node I

Virtual data center

Virtualization

Node II

app2 app3

Physical partitioning

 Improved utilization

 Reduced costs

High flexibility

× Wasteful

× Difficult to manage

app1

web

app1

db

Problem: How to allocate resources?

Approach I: Work-conserving mode

app1 app2 app3 app4
All applications can use

as much resources as

they require
Low-level schedulers

• Greedy applications cause SLO (service level

objective) violations

• How to prioritize? – no differentiation

• How to use scheduler mechanisms to meet targets?

CPU, Storage, Network, Memory

Node

0

1

2

3

4

5

N
u

m
b

e
r

o
f

C
P

U
s

Time

Approach II: Static allocation

Average

Peak

Bursty load Poor response timeWasted resources

Finding the right share is hard!

0

50

100

0 40 80 120

C
P

U
 U

ti
liz

at
io

n

Time

Approach III: Migration

Virtualization

app1 app2

Node I

Virtualization

Node II

Overloaded

node
Underloaded

node

• Good choice for long term overload

• Poor choice for bursty loads

• Adds overhead to an already overloaded node

• SLO violations while being migrated

app3

Performance loss

Automated Control – an example

80% 30%

NOYes
App goals

VM I

slice

VM II

slice

CPU usage? Disk usage?

Goals met ?

50% 50%

CPU

20%

VM I

slice

VM II

slice

Disk

50% 50%70%

Controller

Automatically set resource shares to
meet application targets in

changing conditions

Previous work
• Distributed resource allocation

– AronSIGMETRICS00, ChaseSOSP01, ShenOSDI02

– Orthogonal to our approach

• Low-level schedulers

– Credit, CFQ, SFQ, WaldspurgerOSDI02, GulatiTR07

– Policy vs. Mechanism

• QoS mechanisms

– ChandraIWQOS03, UrgaonkarICAC05

– Developed for a single resource or application

• Control theory based

– AbdelZaherTPDS02, HellersteinBook04,KarlssonIWQOS04

– Applied in other scenarios

Outline

• Motivation
• Background
• Idea

• Modeling
• Controller Design

– Application Controller

– Node Controller

• Evaluation
– Synthetic workloads

– CPU and Disk bottlenecks

Dom0

AutoControl system – 1,000ft view

Node Controller

Xen VMM CPU scheduler

CPU

app1

VM

app2

VM

DISK

Sensors Disk I/O scheduler

App Controllers

Physical node

App Controller Figures out the resource share required for a

single app to meet its targets

Node Controller
Arbitrates among multiple applications

All node controllers are independent

CPU and disk schedulers Final shares are set

Every control interval

Model: metric = f(share)

Application controller

Requested

Shares

App

performance

AppController Targets

Why is modeling hard?

0
1
2
3
4
5
6

30 40 50 60 70R
es

p
o

n
se

 t
im

e

CPU allocation

700 clients

Non linear relationships

Multiple resources

0

20

40

60

80

100

120

0

%
 u

ti
liz

at
io

n

Time

CPU utilization

Disk utilization

Multi-tier applications

Bottleneck shifts

Solution: Dynamic black box modeler

 Nonlinearity approximated using

linear equations

 Multiple resources & multi-tier apps

modeled with Multi Input Multi Output

(MIMO) model

Current performance Prev performance Resource shares

 Parameters (a1… b1 …) updated recursively

(Recursive Least Squares RLS)

Linear approx.

First order

AppController internals
Control as optimization

Simplified Linear Quadratic Regulator formulation

2

1

2

kkref uuQyyWCost

Track target Don’t go wild

Aggression factors
)(kufy

dsk

cpu
uk

Kth time interval

 targetrefy

 Minimize cost

 Quadratic solvers to find ku

Gory details: [CDC’07]

Control with consolidation

App Controller I App Controller II App Controller III

+ +

> total available shareNode Controller

Final share

values

Optimization similar to

AppController

max321 ... sssss n

Resource

shares

Control for data center scale

• Why not centralized controller? – variable explosion

• Why not combine app and node controllers?

o Applications may span multiple nodes

app1 web

app2

Xen VMM

app1 db

app3 web

Xen VMM

app4

app3 db

Xen VMM

Node I Node II Node III

• One AppController for application

• One NodeController per node

Distributed control

app1

controller

app2

controller
app3

controller

app4

controller

Node1
Controller

Node2
Controller

Node3
Controller

DSKCPU DSKCPU DSKCPU

Requested

allocation

Final allocation

Sensors Performance targets

Node1 Node2 Node3

Experiments with 40 nodes on Emulab are successful

Outline

• Motivation
• Background
• Idea

• Modeling
• Controller Design

– Application Controller

– Node Controller

• Evaluation
– Synthetic workloads

– CPU and Disk bottlenecks

Evaluation

• Applications

o RUBiS: eBay style auction benchmark

o TPC-W: Transactional web e-Commerce benchmark

o Smedia: Custom built secure media server

• Workloads

o Synthetic

o CPU and disk bottlenecks

• Evaluation questions

o Can the controller meet targets?

o Can it identify bottlenecks over time in different tiers and fix them?

o Can it identify bottlenecks of different resources? (ex. CPU/Disk)

Experimental setup

rubis web

smedia1

Xen VMM

rubis db

smedia2 smedia4

smedia3

Xen VMM

Time

DSK heavy

CPU heavy

CPU heavyNode II

Node I DSK heavy

0 300 600

Node I Node II

Bottleneck

Bottleneck Bottleneck

Targets
RUBiS – 100 req/sec

Smedia1 – 1000 Kbytes/sec

Smedia2 – 3000 Kbytes/sec

Smedia3 – 15000 Kbytes/sec

Smedia4 – 10000 Kbytes/sec

Node 1: CPU bottleneck

Smedia1

Smedia2

0

1000

2000

3000

4000

1

Th
ro

u
gh

p
u

t
(K

B
yt

e
s/

se
c) AutoControl Target Work-conserving Static

0

1000

2000

3000

4000

1 6 11 16 21 26

Th
ro

u
gh

p
u

t
(K

B
yt

e
s/

se
c)

Time interval (every 10 secs)

0

5000

10000

15000

20000

1 11 21 31 41 51 61 71 81
Time interval (every 10 secs)

0

5000

10000

15000

20000

25000

1

AutoControl
Target
Work-conserving
Static

Node 2: DISK -> CPU bottleneck

Smedia3

Smedia4

Disk bottleneck

CPU

bottleneck

Node 1 & 2: RUBiS performarnce

RUBiS

0

20

40

60

80

100

120

140

160

180

1 11 21 31 41 51 61 71 81 91

Th
ro

u
gh

p
u

t
(r

eq
s/

se
c)

Time interval (every 10 secs)

AutoControl Target

Work-conserving Static

Experiment summary – average error

App Work-
conserving

Static AutoControl

RUBiS 13.8% 38.3% 8.2%

Smedia1 100% 12.1% 4.3%

Smedia2 26.2% 9.6% 2.2%

Smedia3 44.3% 61.4% 10.1%

Smedia4 24.6% 47.5% 9.3%

Error = 100*
yref

yy ref

AutoControl achieves <=10% error

Limitations and future work

• Modeling challenges

o Non linear, fast changing workloads create problems

o Combining white-box and black-box models

• Actuator and sensor behavior

o Inaccuracies in measurements may lead to inaccurate models.

o We are limited by what the scheduler can do

• Network and memory control

o Earlier efforts with network control were unsuccessful

o Preliminary memory control [IM’09 min-conference]

• Integrating with migration

Summary
Automated Control of Multiple Virtualized Resources

Feedback control can be successfully applied to computer systems

o Dynamic black box modeler captures complex dynamics

o AppController can compute shares to meet targets for a single app

o NodeController arbitrates among competing apps

Distributed architecture that scales well

Goals
Resource

Shares

App
Controller

App
Controller

App
Controller

Node Controller Node Controller

ppadala@umich.edu

