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* This is a talk about Koala -- a platform which forgets heuristic-based power management techniques, and uses empirical models to allow real trade-offs between reduced performance 
and energy savings. It solves a serious problems facing power management researchers -- that platforms don’t behave the way they’re supposed to!



Talk outline

3

Saturday, 4 April 2009

• Hardware is really complicated 
• over-simplifying assumptions

Koala is workload-aware, uses realistic models and has practical policies. 

Need to say that energy is different to power. You need to save energy, but you need to manage the power. Energy = Power x 
Time. 

Need to say that Koala manages CPU and memory energy. 
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• Energy efficiency is really important!
• Each of you probably has a mobile phone in your pocket, and in this crowd, they’re probably smart phones.  

- Mobile devices are energy-conscious for two reasons
-Thermal dissiption -- the devices are small and don’t have space for heatsinks/fans. 
-Battery lifetime -- power limits the number of operations that can be performed, which limits potential 
applications. 

What about the cost of energy?
- Using energy has both an environmental and a monetary impact.
- A server has about the same CO2 emissions as 1.5 cars! (\cite[Reduce Energy Costs and Go Green With 
VMware Green IT Solutions ]
-Energy-star compliance has become a big issue. 
-VMWARE: In the United States alone, datacenters consumed $4.5 billion worth of electricity in 2006. 
- VMWARE: 4 Tons of CO2 per server per year. 

 For all of these reasons we consider energy efficiency to be one of the premier problems in computer science and 
engineering. 
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•Power management is really all about controlling power-related hardware knobs in order to achieve some goal.

•Some of those knobs are... (list knobs). 

•These knobs trade performance against power. 

• To limit our scope, we’re looking at one of these hardware controlled knobs -- DVFS -- but there’s no reason that, in the 
future, this approach couldn’t be applied to other knobs which affect power/performance. 

•These knobs are normally controlled in naiive ways: in Linux for example, there are two main CPU power management schemes 
-- ondemand is applies to DVFS. In academic terms, this is based on Mark Weiser’s 1994 OSDI paper. That work was good, and 
applied well to systems at the time, but modern computers don’t work in the same way.  

•But there is so much academic research!? Why doesn’t it ever get used? Answer: it could be, it just needs to be made practical. 
The answer is Koala. Koala bridges the gap between the real world and the academic world. 

•Why are we using 1994 technology to run computers in 2009? They’re simply not the same devices that they were. 
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* Both real-world, and lots of research, assume some fairly simple models. 

* These assumptions are good on a gate-level, but don’t work for complex systems where, on each cycle, the gates perform 
different tasks. They ignore static power, memory, other effects

* Koala allows you to manage modern systems which have more complicated models. 

* I’m going to show a summary of the experiments we ran to investigate these assumptions. For real detail, see the paper. 

Need to be explicit that T is Time, not temperature. 
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* Lets look at performance. The commonly assumed models suggest that the number of CPU cycles for a workload is constant 
across frequency changes -- doubling the CPU frequency halves the execution time. 

* Looking at a CPU bound benchmark, this is indeed the case! The number of cycles stays nearly constant as the CPU frequency 
is increased. So far so good. 

* But let’s look at a memory bound program. The performance of memory isn’t improved by increased CPU frequency, so a 
memory-bound workload doesn’t really benefit from increased frequency. Therefore the number of cycles increases as the CPU 
clock runs faster. 

* Those cycles use extra energy, and the CPU voltage must be increased to support the higher frequency. 
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Things get even more complicated when we start modifying the memory frequency -- on this XScale based platform, we can’t 
easily modify the CPU frequency without modifying the memory and bus frequency. 
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* Now let’s look at energy. The simplest models would suggest a quadratic relationship between energy consumption and 
energy use -- the lowest frequency is always the most energy efficient. 

* For the memory bound benchmark, where the execution time remains nearly constant, this is the case! The workload takes 
more energy as the CPU frequency increases, although not nearly so much as the assumed model suggests.

* But if we look at the CPU bound benchmark, the energy used is reduced when we increase the frequency! What’s going on? 
How can we be so wrong?

* Well... While the power for both benchmarks is definitely increased at higher frequencies, the CPU-bound benchmark runs for a 
much shorter time at the higher frequecies. Since the CPU-bound benchmark runs for a much shorter amount of time, it uses 
less energy over-all. 
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* But if we look at the CPU bound benchmark, the energy used is reduced when we increase the frequency! What’s going on? 
How can we be so wrong?

* Well... While the power for both benchmarks is definitely increased at higher frequencies, the CPU-bound benchmark runs for a 
much shorter time at the higher frequecies. Since the CPU-bound benchmark runs for a much shorter amount of time, it uses 
less energy over-all. 
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This assumes that we either use the extra time created by running fast, or we shut the system down. But what if we don’t have 
anything useful to do with that extra time? 

The system goes idle... And there are different idle modes. This graph shows what would happen for four different idle states 
when we execute a particular benchmark (gzip -- CPU bound). 

Note that the lowest energy frequency to run at is dependent on which sleep state we’ll enter. If we’re going into a higher-power 
state, we should run at the lowest frequency, and if we’re going to end up in a low-power state, we need to run at a high 
frequency. 
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There are lots more of these DVFS “gotchas” discussed in the paper. The DVFS behaviour of real systems just doesn’t fit the 
model. We looked at the effect of temperature and CPU fan speed... As the system warms up, it uses more and more power... 

And when the fan kicks in to cool the system it uses even more power. 
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There are lots more of these DVFS “gotchas” discussed in the paper. The DVFS behaviour of real systems just doesn’t fit the 
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Another one that really had us flummoxed for a while was the efficiency of the system’s voltage regulators. In the Dell Latitude 
D600, the main core regulator’s efficiency is highly dependent on the amount of power running through it as well as the input 
voltage. 

It meant that, at a particular temperature, the system power actually _increased_ when changing down from 1300MHz to 
1200MHz. 



12

Voltage Regulator Efficiency

25 30 35 40
20

30

40

Expected Power for a Dell Latitude D600 with artificially added Vcore load

A
ct

ua
l P

ow
er

 (
W

)

Expected power (W)
Assumed 1.3V 1.2V 1.1V 1.0V

Saturday, 4 April 2009

Another one that really had us flummoxed for a while was the efficiency of the system’s voltage regulators. In the Dell Latitude 
D600, the main core regulator’s efficiency is highly dependent on the amount of power running through it as well as the input 
voltage. 

It meant that, at a particular temperature, the system power actually _increased_ when changing down from 1300MHz to 
1200MHz. 



12

Voltage Regulator Efficiency

25 30 35 40
20

30

40

Expected Power for a Dell Latitude D600 with artificially added Vcore load

A
ct

ua
l P

ow
er

 (
W

)

Expected power (W)
Assumed 1.3V 1.2V 1.1V 1.0V

Saturday, 4 April 2009

Another one that really had us flummoxed for a while was the efficiency of the system’s voltage regulators. In the Dell Latitude 
D600, the main core regulator’s efficiency is highly dependent on the amount of power running through it as well as the input 
voltage. 

It meant that, at a particular temperature, the system power actually _increased_ when changing down from 1300MHz to 
1200MHz. 



12

Voltage Regulator Efficiency

25 30 35 40
20

30

40

Expected Power for a Dell Latitude D600 with artificially added Vcore load

A
ct

ua
l P

ow
er

 (
W

)

Expected power (W)
Assumed 1.3V 1.2V 1.1V 1.0V

Saturday, 4 April 2009

Another one that really had us flummoxed for a while was the efficiency of the system’s voltage regulators. In the Dell Latitude 
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voltage. 
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There are lots of other quirks discussed in the paper. It means that the traditional assumptions can actually cause power 
management schemes to use more energy, not less. This will become increasingly true as we see more and more hardware 
power management features.  

Hardware platforms behave differently to each other and workloads behave differently to each other on them. You need to build a 
model that reflects the actual hardware you’re dealing with, and you need to scale workloads independently. And it’s not good 
enough to set the settings system wide -- in a multi-tasking workload, serious gains can be made by customising the system 
settings for individual workloads. To do this, we need a more realistic model. 
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Koala elegantly deals with real hardware and real platforms by using models to represent the system. We use:
* CPU performance counters to measure the properties of running workloads;
* A workload-agnostic system tuning knob -- alpha. 

And we can select the right combination of settings for the system’s scaling knobs. 
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Koala elegantly deals with real hardware and real platforms by using models to represent the system. We use:
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• First, we look at which workloads we are going to run, and predict some characteristics about those workloads based on what 
they’ve been doing recently (i.e. we argue temporal locality). 
•Second, we use the information from the workload prediction to estimate what the performance and energy would be for 
various candidate setpoints. 
•Third, we use a selection policy to choose from the candidate setpoints, based on quality of service constraints. 



Workload Prediction

16

Workload Prediction

Candidate
Setpoints

QoS Info Setpoint

Energy/Performance 
Models

Selection Policy

Workload 
Statistics

Saturday, 4 April 2009

Our workload predictor is, at present, very simple. There is lots of work around on how this can be done much better, but our 
present method is to assume locality -- workloads will continue to do what they’ve been doing -- we assume that the next time 
slice will have the same properties as the previous timeslice. 

Multi-tasking -- if you’re running multiple workloads, the settings need to be appropriate for the particular application. 
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* Next, I’ll talk about a major component of Koala -- energy models. These are built and characterised off-line for use at run-
time. 
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* Next, I’ll talk about a major component of Koala -- energy models. These are built and characterised off-line for use at run-
time. 



Energy and performance models

18

Previously published: performance counter based 
performance and energy models. 

Saturday, 4 April 2009

* The models we use here are similar to those which we’ve discussed in previous work. Our performance model calculates the 
ratio between the number of cycles at a target frequency and the number of cycles at the sampled frequency. The model which 
you see here is for a single adjustable frequency, but more generic models are possible and discussed in the papers. 

* The energy model we use is also based on previous works -- it is based on the number of events that occur in both voltage 
scaled and static voltage domains. These events might be as simple as CPU cycles, but can include other events like external bus 
accesses and particular types of instructions which use more energy than others. 

* We select the appropriate performance counters, and characterise the models off-line for each platform. Note though, that 
these models encapsulate all of the platform-specificity in Koala -- if you can build a model for your platform, Koala can make 
power management decisions. 

* We presented a couple of extra things in this paper -- a method for building the empirical models in a scientific way, 
modelling idle mode power, switching overheads, temperature, fans, etc. 

-- Talk about the macro-level workflow. Characterising off-line. Systematic way of choosing performance counters, etc. 
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Lets look at how these models are used in Koala. 

First, we take a sample of the workload and assume that the next timeslice of the workload is going to behave in a very similar 
way. 

Then, for several candidate setpoints, the models predict what the percentage performance and energy will be. Note that the 
model can be arbitrarily accurate depending on the hardware available -- it can take into account as many of the hardware 
quirks as possible.
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Lets look at how these models are used in Koala. 

First, we take a sample of the workload and assume that the next timeslice of the workload is going to behave in a very similar 
way. 
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Now that we have some information about the performance and energy used by the workload at various frequencies, we can try 
to choose a setting based on our needs. 

We could choose the minimum energy setting if we really cared about energy, or the minimum time (max performance) setting if 
we really cared about that. If we had problems with thermal dissipation in the system we could choose the minimum power 
setting. 

One issue with choosing the minimum energy setting is that we might be getting a large performance hit for very little energy 
savings. This is addressed by a Minimum Energy * Delay policy, since you can expect at least an equal energy saving for any 
performance hit. 

A policy that we’ve seen in the literature (Frank, and others) that we can easily implement with Koala is a Bounded Performance 
Degradation policy. Here we bound the performance degradation at 90%, and so we choose setting 4. 
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Now that we have some information about the performance and energy used by the workload at various frequencies, we can try 
to choose a setting based on our needs. 

We could choose the minimum energy setting if we really cared about energy, or the minimum time (max performance) setting if 
we really cared about that. If we had problems with thermal dissipation in the system we could choose the minimum power 
setting. 

One issue with choosing the minimum energy setting is that we might be getting a large performance hit for very little energy 
savings. This is addressed by a Minimum Energy * Delay policy, since you can expect at least an equal energy saving for any 
performance hit. 

A policy that we’ve seen in the literature (Frank, and others) that we can easily implement with Koala is a Bounded Performance 
Degradation policy. Here we bound the performance degradation at 90%, and so we choose setting 4. 
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Ideal lbm mcf swim gzip milc povray equake

Saturday, 4 April 2009

This plot represents real Koala data -- benchmarks running with the bounded performance degradation policy. The CPU bound 
benchmarks achieve the requested minimum performance, but the memory bound benchmarks can’t be degraded that far 
because even if you ran at the lowest frequency, the performance wouldn’t really change that much. Koala makes the best effort. 

The thing to take away from this graph is that if we ask for a performance degradation, the CPU bound benchmarks will 
definitely do it. Set the performance to 90%, and you’ll get 90% of the performance for a CPU bound benchmark. 



21

Bounded performance degradation

25 50 75 100
25

43.75

62.5

81.25

100

Actual vs. requested performance with Koala

A
ct

ua
l P

er
fo

rm
an

ce
 (

%
)

Requested Minimum Performance (%)
Ideal lbm mcf swim gzip milc povray equake

Saturday, 4 April 2009

This plot represents real Koala data -- benchmarks running with the bounded performance degradation policy. The CPU bound 
benchmarks achieve the requested minimum performance, but the memory bound benchmarks can’t be degraded that far 
because even if you ran at the lowest frequency, the performance wouldn’t really change that much. Koala makes the best effort. 

The thing to take away from this graph is that if we ask for a performance degradation, the CPU bound benchmarks will 
definitely do it. Set the performance to 90%, and you’ll get 90% of the performance for a CPU bound benchmark. 



21

Bounded performance degradation

25 50 75 100
25

43.75

62.5

81.25

100

Actual vs. requested performance with Koala

A
ct

ua
l P

er
fo

rm
an

ce
 (

%
)

Requested Minimum Performance (%)
Ideal lbm mcf swim gzip milc povray equake

Saturday, 4 April 2009

This plot represents real Koala data -- benchmarks running with the bounded performance degradation policy. The CPU bound 
benchmarks achieve the requested minimum performance, but the memory bound benchmarks can’t be degraded that far 
because even if you ran at the lowest frequency, the performance wouldn’t really change that much. Koala makes the best effort. 

The thing to take away from this graph is that if we ask for a performance degradation, the CPU bound benchmarks will 
definitely do it. Set the performance to 90%, and you’ll get 90% of the performance for a CPU bound benchmark. 



21

Bounded performance degradation

25 50 75 100
25

43.75

62.5

81.25

100

Actual vs. requested performance with Koala

A
ct

ua
l P

er
fo

rm
an

ce
 (

%
)

Requested Minimum Performance (%)
Ideal lbm mcf swim gzip milc povray equake

Memory-bound

CPU-bound

Saturday, 4 April 2009

This plot represents real Koala data -- benchmarks running with the bounded performance degradation policy. The CPU bound 
benchmarks achieve the requested minimum performance, but the memory bound benchmarks can’t be degraded that far 
because even if you ran at the lowest frequency, the performance wouldn’t really change that much. Koala makes the best effort. 

The thing to take away from this graph is that if we ask for a performance degradation, the CPU bound benchmarks will 
definitely do it. Set the performance to 90%, and you’ll get 90% of the performance for a CPU bound benchmark. 
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Bounded performance degradation
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Looking at the energy, we see that the CPU bound benchmarks also behave differently to memory bound ones. For any value of 
minimum performance les than 100%, the CPU bound benchmarks use _more_ energy. The memory bound benchmarks use less. 
A value found empirically is around about 90%, but that is sub-optimal for both the CPU bound and memory-bound 
benchmarks. Moreover -- we lose 10% of the performance on the CPU-bound benchmarks... for an energy INCREASE!

It means that the performance setting really isn’t a globally applicable metric for how much we want to scale. 

We need a policy that is entirely workload agnostic! 
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minimum performance les than 100%, the CPU bound benchmarks use _more_ energy. The memory bound benchmarks use less. 
A value found empirically is around about 90%, but that is sub-optimal for both the CPU bound and memory-bound 
benchmarks. Moreover -- we lose 10% of the performance on the CPU-bound benchmarks... for an energy INCREASE!

It means that the performance setting really isn’t a globally applicable metric for how much we want to scale. 

We need a policy that is entirely workload agnostic! 
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Generalised Energy-Delay Policy

η = P (1−α)T (1+α)
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- What if, instead of minimising energy, or time, or power, we minimised some function which gave us a good trade-off. 
- We came up with such a function, and call the resulting policy generalised E*D, or Alpha. 
- By using various different values of alpha, we can express the full spectrum of policies, including Minimum Energy, Minimum 
Time (max performance), Minimum Energy and, for thermal throttling, minimum power. 
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Time (max performance), Minimum Energy and, for thermal throttling, minimum power. 



24

 40

 50

 60

 70

 80

 90

 100

-1 -0.5  0  0.5  1
 80

 90

 100

 110

 120

 130

 140

 150

 160

 170

Ac
tu

al
 P

er
fo

rm
an

ce
 (%

)

Ac
tu

al
 E

ne
rg

y 
(%

)

Alpha setting

Act Perf POVRAY
Act Energy POVRAY

Generalised Energy-Delay Policy

Saturday, 4 April 2009



24

 40

 50

 60

 70

 80

 90

 100

-1 -0.5  0  0.5  1
 80

 90

 100

 110

 120

 130

 140

 150

 160

 170

Ac
tu

al
 P

er
fo

rm
an

ce
 (%

)

Ac
tu

al
 E

ne
rg

y 
(%

)

Alpha setting

Act Perf POVRAY
Act Energy POVRAY

Generalised Energy-Delay Policy

Energy

Performance

Saturday, 4 April 2009



24

 40

 50

 60

 70

 80

 90

 100

-1 -0.5  0  0.5  1
 80

 90

 100

 110

 120

 130

 140

 150

 160

 170

Ac
tu

al
 P

er
fo

rm
an

ce
 (%

)

Ac
tu

al
 E

ne
rg

y 
(%

)

Alpha setting

Act Perf POVRAY
Act Energy POVRAY

Act Perf MILC
Act Energy MILC

Generalised Energy-Delay Policy

Energy

Performance

Saturday, 4 April 2009



Implementation

25

• Implemented in Linux 2.6.24.
• Characterised using SPEC2000.
• Validated using SPEC2006. 
• Measured using a custom-built 

data logger.

1.Dell Latitude D600
2.IBM T41
3.AMD Opteron 
Server
4.Intel XEON Server
5.Gumstix
6.UNSW PLEB2
7.NICTA Ibox
8.Menlow
9.Asus EEEPC 901
10.Phycore iMX31

Platforms

Saturday, 4 April 2009
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Ten more reasons to read the paper.

• More hardware quirks.

• Empirical data from 
several platforms

• Parameter and model 
selection

• Experimental details

• Implementation details

• Multi tasking

• Frequency switch 
overheads

• Calculation overheads

• Higher level policies

• Practicality issues

Saturday, 4 April 2009
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• The commonly assumed models are wrong. 

• Use empirical models to manage power.

• Use workload-agnostic policies.

• Characterised, tested and evaluated on lots 
of real hardware. 

http://ertos.nicta.com.au

David.Snowdon@nicta.com.au

Saturday, 4 April 2009

The idea with Koala is that if you can model how a system is likely to behave in various conditions, you can control it. 

If you can build a model for your particular platform, Koala can control it. If that model encompasses the quirks of your 
platform, Koala will avoid the pitfalls and take advantage of the opportunities. You just need to build the model. 

http://ertos.nicta.com.au
http://ertos.nicta.com.au
mailto:David.Snowdon@nicta.com.au
mailto:David.Snowdon@nicta.com.au


From imagination to impact

28

Saturday, 4 April 2009



From imagination to impact

28

Saturday, 4 April 2009


