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Multi-Variant Execution 

2 

Variant 2Variant 1 Variant 2Variant 1



Detection Requirements 

  Lock-step execution 

  Feed all variants with identical input 

  Variants which behave differently when attacked 
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Reverse Stack Growth Direction 
  Stack objects are located in opposite positions 
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From Source to Execution 
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Orchestra Architecture 

  The monitor is a user-space application 
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Granularity of Monitoring 

  Granularity of monitoring and Synchronization 
  Ideally after each instruction 

  Not always possible 

  Performance issues 

  Synchronize and monitor at system calls 
  No harm is done without invoking a system call 

  All instances must invoke the same syscall with equivalent 
arguments 
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System Call Monitoring 

  Debugging facility of Linux (ptrace) is used to build the 
monitor 

  The monitor is notified twice per system call 
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System Call Monitoring (cont.) 

  Equivalency is checked at the beginning of a system call 
  The system calls must be the same 

  Arguments must be equivalent 

  Pointers (buffers) have the same content 

  Values are identical 

  Results of the system call are written back to the variants 
at the end of the system call if needed 
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System Call Execution 

  Non-state changing system call that produce immutable 
results are executed by all 
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System Call Execution (cont.) 

  State changing system calls are executed by the monitor 
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System Call Execution (cont.) 

  Non-state changing system call that produce non-
immutable results are executed by all, results are copied 
from the first variant to all 
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Data Transfer 

  ptrace transfers only 4 bytes at a time 
  very slow in transferring large buffers 
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Data Transfer (cont.) 

  We tried using named pipes, but they cannot transfer 
more than 4K bytes at a time 

  Shared memory is fast and can transfer mega bytes 
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Data Transfer Performance 
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Shared memory is about 1000 times faster than ptrace and 20 
times faster than FIFO in transferring a 128K buffer 

16 



Removing False Positives 

False positives are the major practical issue in using multi-variant execution 
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Multi-Threaded Variants 

  Different scheduling of multi-threaded or multi-process 
applications can cause false positives 
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Monitoring multi-threaded variants 

  Corresponding threads/processes must be synchronized 
to each other 
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File Descriptors 

  The same file descriptor is always reported to all variants 
when they invoke system calls that return a file descriptor 
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Process ID 

  Monitor reports the process ID of the first variant to all 

  The PID of the first variant’s child process is reported as 
the result of fork or clone to all the variants 
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Process IDs in Arguments 

  When variants need to run a system call that receives a 
PID, appropriate PID is restored before the execution of 
the system call 
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Asynchronous Signals 

  Signal handlers can cause different sequences of system 
calls to be executed by the variants 
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Time and Random Numbers 

  System calls that read time (e.g., gettimeofday) are 
executed by one variant and the result is copied to all 

  By providing identical time and other system information 
to all variants, they likely use the same seed to generate 
random numbers 

  The monitor reads /dev/urandom and copies the result to 
all variants 

  Reading CPU time stamp counters (RDTSC) may still 
cause false positives 
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Performance 
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Summary 

  Multi-variant execution is an effective technique in 
detecting and disrupting attacks 

  A reverse stack executable can prevent stack-based 
buffer overflow vulnerabilities in a multi-variant 
environment 

  Our methods can remove most sources of false positives 
in multi-variant execution 

  Running two parallel variants have about 15% overhead 
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Thank you 

Questions? 
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