
Orchestra: Intrusion Detection Using
Parallel Execution and Monitoring of
Program Variants in User-Space
Babak Salamat, Todd Jackson, Andreas Gal, and Michael Franz

Secure Systems and Languages Laboratory

Department of Computer Science

University of California, Irvine

EuroSys 2009, April 2009
1

Multi-Variant Execution

2

Variant 2Variant 1 Variant 2Variant 1

Detection Requirements

  Lock-step execution

  Feed all variants with identical input

  Variants which behave differently when attacked

3

Free Space

Other Data

Buffer

.

.

.

Frame Pointer

Return Address

Caller Data

Upward
Growing Stack

Free Space

Other Data

Buffer

.

.

.

Frame Pointer

Return Address

Caller Data

Downward
Growing Stack

Reverse Stack Growth Direction
  Stack objects are located in opposite positions

4

Return Address

Return Address

5

From Source to Execution

6

Source

Code

Modified

Compiler

(GCC 4.2)

Modified

Library

(Dietlibc)

Multi-

Variant

Execution

Modified RTL generation

Modified code generation

Modified assembly

code of the library Implemented the

multi-variant monitor

~10,000 LoC in C++

Orchestra Architecture

  The monitor is a user-space application

7

Diversified Application

Operating System

Multi-Variant Monitor
Untrusted

Trusted

Library

Conventional

Application

Library 1

Variant 1

Library n

Variant n...

Granularity of Monitoring

  Granularity of monitoring and Synchronization
  Ideally after each instruction

  Not always possible

  Performance issues

  Synchronize and monitor at system calls
  No harm is done without invoking a system call

  All instances must invoke the same syscall with equivalent
arguments

8

System Call Monitoring

  Debugging facility of Linux (ptrace) is used to build the
monitor

  The monitor is notified twice per system call

9

Variant 2Variant 1

Syscall SyscallMonitor

System Call Monitoring (cont.)

  Equivalency is checked at the beginning of a system call
  The system calls must be the same

  Arguments must be equivalent

  Pointers (buffers) have the same content

  Values are identical

  Results of the system call are written back to the variants
at the end of the system call if needed

10

System Call Execution

  Non-state changing system call that produce immutable
results are executed by all

11

Variant 2Variant 1

uname unameMonitor

Variant 2Variant 1

uname unameMonitor

System Call Execution (cont.)

  State changing system calls are executed by the monitor

12

Variant 2Variant 1

write(stdout) write(stdout)Monitor

Variant 2Variant 1

skipped skipped

Monitor

write(stdout)

Variant 2Variant 1

skipped skipped

Monitor

write(stdout) 55

5

System Call Execution (cont.)

  Non-state changing system call that produce non-
immutable results are executed by all, results are copied
from the first variant to all

13

Variant 2Variant 1

gettime gettimeMonitor8:00 8:01

Variant 2Variant 1

gettime gettimeMonitor8:00 8:00

Data Transfer

  ptrace transfers only 4 bytes at a time
  very slow in transferring large buffers

14

Variant 1

4K Buffer

1000 ptrace calls

Monitor

Data Transfer (cont.)

  We tried using named pipes, but they cannot transfer
more than 4K bytes at a time

  Shared memory is fast and can transfer mega bytes

15

Monitor

Variant 1

Shared

memory
Buffer

my

memcpy

Data Transfer Performance

!"

!#"

!##"

!###"

!####"

!#####"

$" %&" !&$" '!&" &(" $(" %&(" !&$("

!
"#
$
%&
'
()
*+

&
(,
-
*.
/0
%&
.0
1
'
%2
(

345&/(6*7&(,389&%2(

)*+,-." /0/1" 23,+.4"5.67+8"

Shared memory is about 1000 times faster than ptrace and 20
times faster than FIFO in transferring a 128K buffer

16

Removing False Positives

False positives are the major practical issue in using multi-variant execution

17

Variant 1 Variant 2

Multi-Threaded Variants

  Different scheduling of multi-threaded or multi-process
applications can cause false positives

18

Variant 2

Thread 1

Variant 2

Thread 2
Variant 1

Thread 2

Variant 1

Thread 1

write

readread

write

Monitoring multi-threaded variants

  Corresponding threads/processes must be synchronized
to each other

19

Variant 2

Thread 1

Variant 2

Thread 2

Variant 1

Thread 2

Variant 1

Thread 1

write

readread

write

Monitor

Thread 2

Monitor

Thread 1

File Descriptors

  The same file descriptor is always reported to all variants
when they invoke system calls that return a file descriptor

20

Variant 2Variant 1

Monitor pipe 9pipe 7

Variant 2Variant 1

Monitor pipe 11pipe 11

Variant 2Variant 1

Monitor open(1.txt, WR)open(1.txt, WR)

Variant 2Variant 1

Monitor

open(1.txt, WR)
5 5skipped skipped

Process ID

  Monitor reports the process ID of the first variant to all

  The PID of the first variant’s child process is reported as
the result of fork or clone to all the variants

21

Variant 2

PID: 101

Variant 1

PID: 100

getpid 100 getpid 100Monitor

Variant 2

PID: 101

Variant 1

PID: 100

getpid 100 getpid 101Monitor

Process IDs in Arguments

  When variants need to run a system call that receives a
PID, appropriate PID is restored before the execution of
the system call

22

Variant 2

PID: 101

Variant 1

PID: 100

Monitorkill(100) kill(100)

Variant 2

PID: 101

Variant 1

PID: 100

Monitorkill(100) kill(101)

Asynchronous Signals

  Signal handlers can cause different sequences of system
calls to be executed by the variants

23

Variant 1 Variant 2

Syscall 1 Syscall 1

signal handler

Syscall 8

Time and Random Numbers

  System calls that read time (e.g., gettimeofday) are
executed by one variant and the result is copied to all

  By providing identical time and other system information
to all variants, they likely use the same seed to generate
random numbers

  The monitor reads /dev/urandom and copies the result to
all variants

  Reading CPU time stamp counters (RDTSC) may still
cause false positives

24

Performance

!"#

$!"#

%!"#

&!"#

'!"#

(!!"#

)*
+,
-#

./
01
#

.)
)#

21
*#

1+
*3
4*
##

14
*56
7
8#

7
)9
#

.+
1#
#

2:
*;
4<
##

6/
01
$#
#

;=
:5
9##
#

4>
?+
84
##

+*
;##
##

7
43
+#
###

+1
+)
@4
#

;+
*#

AB
C#

7
CD
C4
41
#

+2
4*
+.
4#

EF#G<4)?H:B# EE#G<4)?H:B# F#G<4)?H:B#

SPEC

25

Summary

  Multi-variant execution is an effective technique in
detecting and disrupting attacks

  A reverse stack executable can prevent stack-based
buffer overflow vulnerabilities in a multi-variant
environment

  Our methods can remove most sources of false positives
in multi-variant execution

  Running two parallel variants have about 15% overhead

26

Thank you

Questions?

27

