
Orchestra: Intrusion Detection Using
Parallel Execution and Monitoring of
Program Variants in User-Space
Babak Salamat, Todd Jackson, Andreas Gal, and Michael Franz

Secure Systems and Languages Laboratory

Department of Computer Science

University of California, Irvine

EuroSys 2009, April 2009
1

Multi-Variant Execution

2

Variant 2Variant 1 Variant 2Variant 1

Detection Requirements

  Lock-step execution

  Feed all variants with identical input

  Variants which behave differently when attacked

3

Free Space

Other Data

Buffer

.

.

.

Frame Pointer

Return Address

Caller Data

Upward
Growing Stack

Free Space

Other Data

Buffer

.

.

.

Frame Pointer

Return Address

Caller Data

Downward
Growing Stack

Reverse Stack Growth Direction
  Stack objects are located in opposite positions

4

Return Address

Return Address

5

From Source to Execution

6

Source

Code

Modified

Compiler

(GCC 4.2)

Modified

Library

(Dietlibc)

Multi-

Variant

Execution

Modified RTL generation

Modified code generation

Modified assembly

code of the library Implemented the

multi-variant monitor

~10,000 LoC in C++

Orchestra Architecture

  The monitor is a user-space application

7

Diversified Application

Operating System

Multi-Variant Monitor
Untrusted

Trusted

Library

Conventional

Application

Library 1

Variant 1

Library n

Variant n...

Granularity of Monitoring

  Granularity of monitoring and Synchronization
  Ideally after each instruction

  Not always possible

  Performance issues

  Synchronize and monitor at system calls
  No harm is done without invoking a system call

  All instances must invoke the same syscall with equivalent
arguments

8

System Call Monitoring

  Debugging facility of Linux (ptrace) is used to build the
monitor

  The monitor is notified twice per system call

9

Variant 2Variant 1

Syscall SyscallMonitor

System Call Monitoring (cont.)

  Equivalency is checked at the beginning of a system call
  The system calls must be the same

  Arguments must be equivalent

  Pointers (buffers) have the same content

  Values are identical

  Results of the system call are written back to the variants
at the end of the system call if needed

10

System Call Execution

  Non-state changing system call that produce immutable
results are executed by all

11

Variant 2Variant 1

uname unameMonitor

Variant 2Variant 1

uname unameMonitor

System Call Execution (cont.)

  State changing system calls are executed by the monitor

12

Variant 2Variant 1

write(stdout) write(stdout)Monitor

Variant 2Variant 1

skipped skipped

Monitor

write(stdout)

Variant 2Variant 1

skipped skipped

Monitor

write(stdout) 55

5

System Call Execution (cont.)

  Non-state changing system call that produce non-
immutable results are executed by all, results are copied
from the first variant to all

13

Variant 2Variant 1

gettime gettimeMonitor8:00 8:01

Variant 2Variant 1

gettime gettimeMonitor8:00 8:00

Data Transfer

  ptrace transfers only 4 bytes at a time
  very slow in transferring large buffers

14

Variant 1

4K Buffer

1000 ptrace calls

Monitor

Data Transfer (cont.)

  We tried using named pipes, but they cannot transfer
more than 4K bytes at a time

  Shared memory is fast and can transfer mega bytes

15

Monitor

Variant 1

Shared

memory
Buffer

my

memcpy

Data Transfer Performance

!"

!#"

!##"

!###"

!####"

!#####"

$" %&" !&$" '!&" &(" $(" %&(" !&$("

!
"#
$
%&
'
()
*+

&
(,
-
*.
/0
%&
.0
1
'
%2
(

345&/(6*7&(,389&%2(

)*+,-." /0/1" 23,+.4"5.67+8"

Shared memory is about 1000 times faster than ptrace and 20
times faster than FIFO in transferring a 128K buffer

16

Removing False Positives

False positives are the major practical issue in using multi-variant execution

17

Variant 1 Variant 2

Multi-Threaded Variants

  Different scheduling of multi-threaded or multi-process
applications can cause false positives

18

Variant 2

Thread 1

Variant 2

Thread 2
Variant 1

Thread 2

Variant 1

Thread 1

write

readread

write

Monitoring multi-threaded variants

  Corresponding threads/processes must be synchronized
to each other

19

Variant 2

Thread 1

Variant 2

Thread 2

Variant 1

Thread 2

Variant 1

Thread 1

write

readread

write

Monitor

Thread 2

Monitor

Thread 1

File Descriptors

  The same file descriptor is always reported to all variants
when they invoke system calls that return a file descriptor

20

Variant 2Variant 1

Monitor pipe 9pipe 7

Variant 2Variant 1

Monitor pipe 11pipe 11

Variant 2Variant 1

Monitor open(1.txt, WR)open(1.txt, WR)

Variant 2Variant 1

Monitor

open(1.txt, WR)
5 5skipped skipped

Process ID

  Monitor reports the process ID of the first variant to all

  The PID of the first variant’s child process is reported as
the result of fork or clone to all the variants

21

Variant 2

PID: 101

Variant 1

PID: 100

getpid 100 getpid 100Monitor

Variant 2

PID: 101

Variant 1

PID: 100

getpid 100 getpid 101Monitor

Process IDs in Arguments

  When variants need to run a system call that receives a
PID, appropriate PID is restored before the execution of
the system call

22

Variant 2

PID: 101

Variant 1

PID: 100

Monitorkill(100) kill(100)

Variant 2

PID: 101

Variant 1

PID: 100

Monitorkill(100) kill(101)

Asynchronous Signals

  Signal handlers can cause different sequences of system
calls to be executed by the variants

23

Variant 1 Variant 2

Syscall 1 Syscall 1

signal handler

Syscall 8

Time and Random Numbers

  System calls that read time (e.g., gettimeofday) are
executed by one variant and the result is copied to all

  By providing identical time and other system information
to all variants, they likely use the same seed to generate
random numbers

  The monitor reads /dev/urandom and copies the result to
all variants

  Reading CPU time stamp counters (RDTSC) may still
cause false positives

24

Performance

!"#

$!"#

%!"#

&!"#

'!"#

(!!"#

)*
+,
-#

./
01
#

.)
)#

21
*#

1+
*3
4*
##

14
*56
7
8#

7
)9
#

.+
1#
#

2:
*;
4<
##

6/
01
$#
#

;=
:5
9##
#

4>
?+
84
##

+*
;##
##

7
43
+#
###

+1
+)
@4
#

;+
*#

AB
C#

7
CD
C4
41
#

+2
4*
+.
4#

EF#G<4)?H:B# EE#G<4)?H:B# F#G<4)?H:B#

SPEC

25

Summary

  Multi-variant execution is an effective technique in
detecting and disrupting attacks

  A reverse stack executable can prevent stack-based
buffer overflow vulnerabilities in a multi-variant
environment

  Our methods can remove most sources of false positives
in multi-variant execution

  Running two parallel variants have about 15% overhead

26

Thank you

Questions?

27

