Orchestra: Intrusion Detection Using

Parallel Execution and Monitoring of
Program Variants in User-Space

Babak Salamat, Todd Jackson, Andreas Gal, and Michael Franz

Secure Systems and Languages Laboratory
Department of Computer Science

University of California, Irvine

EuroSys 2009, April 2009

Multi-Variant Execution

Variant 2 "

Variant 1

Detection Requirements

Lock-step execution
Feed all variants with identical input

Variants which behave differently when attacked

Reverse Stack Growth Direction

Stack objects are located in opposite positions

Downward Upward
Growing Stack Growing Stack

[Free Space

Other Data

Buffer
L Other Data L
s
(Frame Pointer
Free Space Return Address
Y (Caller Data

US-CERT

UNITED STATES COMPUTER EMERGENCY READINESS TEAM

Vulnerability Date

Notes Metric ID Public Name

Database 142.5 VU#19160 icrosoft Windows animated cursor stack buffer overflow

Search 108.16 VU#16532 11/10/1999 BIND T_NXT record processing may cause buffer overflow

Vulnerability 104.73 VU#41870 04/03/1999 Sun Solstice AdminSuite ships with insecure default configuration

e 99 VU#945216 02/08/2001 SSH CRC32 attack detection code contains remote integer overflow

Vulnerability 945 VU#254236 09/10/2003 Microsoft Windows RPCSS Service contains heap overflow in DCOM request filename handling
Notes Help 945 VU#483492 09/10/2003 Microsoft Windows RPCSS Service contains heap overflow in DCOM activation routines

Information

90.97 VU#162451 04/20/2004 Cisco 10S fails to properly process solicited SNMP operations
89.5 VU#150227 02/19/2002 HTTP proxy default configurations allow arbitrary TCP connections
_ 88.2 VU#82726A icrosoft Server service RPC stack buffer overflow vulnerability
87.72 NVU#29823 06/25/2000 Format string input validation error in wu-ftpd site_exec() function
I 81 VU#5648 07/27/1998 Buffer Overflows in various email clients

ID Number 79.65 VU#970472 04/04/2001 Network Time Protocol ([x]ntpd) daemon contains buffer overtflow in ntp_control:ctl_getitem() function
CVE Name 79.31 VU#789543 05/14/2001 IIS decodes filenames superfluously after applying security checks
_ 7875 VU#568148 07/16/2003 Microsoft Windows RPC vulnerable to buffer overflow
bl 78 VU#117394 03/17/2003 Buffer Overflow in Core Microsoft Windows DLL
Date Published 78 VU#257164(icrosoft DHCP Client service contains a buffer overflow

76.5 NU#323070 1172572003 Outlook Express MHTML protocol handler does not properly validate source of alternate content
7481 NVU#745371 07/18/2001 Multiple vendor telnet daemons vulnerable to buffer overflow via crafted protocol options

Severity Metric 735 VU#411332 07/16/2003 Cisco I0S Interface Blocked by IPv4 Packet
73.1 VU#28934 12/14/1999 Sun Solaris sadmind buffer overflow in amsl_verify when requesting NETMGT_PROC_SERVICE

Date Updated

From Source 1o Execution

Modified Modified Multi-

Sg::jcee wesl Compiler ===l Library ===l Variant
(GCC 4.2) (Dietlibc) Execution

y |
Modified RTL generation
Modified code generation

Modified assembly '3

code of the library Implemented the
multi-variant monitor

~10,000 LoC in C++

Orchestra Architecture

The monitor is a user-space application

Diversified Application

Variant 1 Variant n
[N N J
" Conventional [Library 1] [Library n]
Application | <
[Library] N Multi-Variant Monitor) T Untrusted
Operating System } ¢ Trusted

Granularity of Monitoring

Granularity of monitoring and Synchronization
O I|deally after each instruction

O Not always possible

O Performance issues

Synchronize and monitor at system calls
O No harm is done without invoking a system call

O All instances must invoke the same syscall with equivalent
arguments

System Call Monitoring

Debugging facility of Linux (ptrace) is used to build the
monitor

The monitor is notified twice per system call

Variant 1 Variant 2

() 4

Syscall Monitor Syscall
<) <)

System Call Monitoring (cont.)

Equivalency is checked at the beginning of a system call
O The system calls must be the same
O Arguments must be equivalent

Pointers (buffers) have the same content

Values are identical

Results of the system call are written back to the variants
at the end of the system call if needed

System Call Execution

Non-state changing system call that produce immutable
results are executed by Aall

Variant 1 Variant 2

—)

uname Monitor uname

() <)

System Call Execution (cont.)

State changing system calls are executed by the monitor

Variant 1 Variant 2

Monitor
write(stdout)

skipped 5 5 skipped

—)

System Call Execution (cont.)

Non-state changing system call that produce non-
Immutable results are executed by all, results are copied
from the first variant to all

Variant 1 Variant 2

)
gettime —8:00 gettime —>8:00
4 <)

Data Transfer

ptrace transfers only 4 bytes at a time
O very slow in transferring large buffers

Variant 1

4K Buffer

1000 ptrace calls

Data Transfer (cont.)

We tried using named pipes, but they cannot transfer
more than 4K bytes at a time

Shared memory is fast and can fransfer mega bytes

Variant 1

Buffer

Data Transfer Performance

Shared memory is about 1000 times faster than ptrace and 20
times faster than FIFO in fransferring a 128K buffer

=®=—ptrace =—#—FIFO Shared Memory

100000
)
T 10000

o

(8]

2
5 1000
2

£
= 100
©

2

Q.
o 10

w

1 /
8 32 128 512 2K 8K 32K 128K
Buffer Size (Bytes)

Variant 1 Variant 2

Removing False Positives

False positives are the major practical issue in using multi-variant execution

Multi-Threaded Variants

Different scheduling of multi-threaded or mulfi-process
applications can cause false positives

. Variant 2
Variant 1 Thread 2
Thread 2

read read
write write
Variant 1 Variant 2

Thread 1 Thread 1

Monitoring multi-threaded variants

Corresponding threads/processes must be synchronized
to each other

Variant 1 Variant 2
Thread 2 Thread 2
<) . <mm)
read Monitor read
Thread 2
Variant 1 Variant 2
Thread 1 Thread 1
. —) Monitor —) .
write write

Thread 1

File Descriptors

The same file descriptor is always reported to all variants
when they invoke system calls that retfurn a file descriptor

Variant 1 Variant 2

Monitor

skipped 5

20

Process ID

Monitor reports the process ID of the first variant to all

The PID of the first variant’s child process is reported as
the result of fork or clone to all the variants

Variant 1 Variant 2
PID: 100 PID: 101

getpid—> 100 getpid— 101
<)

21

Process IDs In Arguments

When variants need to run a system call that receives a
PID, appropriate PID is restored before the execution of
the system call

Variant 1 Variant 2
PID: 100 PID: 101

<4 <4
kill(100) Monitor kill(1071)

22

Asynchronous Signals

Signal handlers can cause different sequences of system
calls to be executed by the variants

Variant 1 Variant 2

P
]
]
\ Syscall 8

S e
¢ [
Syscall 1) Syscall 1
g

23

Time and Random Numbers

System calls that read time (e.g., gettimeofday) are
executed by one variant and the result is copied to all

By providing idenftical fime and other system information
to all variants, they likely use the same seed to generate
random numbers

The monitor reads /dev/urandom and copies the result to
all variants

Reading CPU time stamp counters (RDTSC) may still
cause false positives

24

Performance

B DU Execution ™ DD Execution U Execution
100% -
80% -] B B
60% -] B
40% - B
20% - B
0% -
] & Z S O Q 2
QAR %55' AQK & & &R e &' N ¢ & > XX QO < &
> & SRS ¢ &S P o7 < ¢ @
¢ ¢ QQ:\\ S & & g @3" ~
I SPEC {

Multi-variant execution is an effective technique in
detecting and disrupting attacks

A reverse stack executable can prevent stack-based
buffer overflow vulnerabllities in a multi-variant
environment

Our methods can remove most sources of false positives
in multi-variant execution

Running two parallel variants have about 15% overhead

26

Thank you

Questions?e

