o

vrije Universiteit

Pointless Tainting?

Asia Slowinska, Herbert Bos
Vrije Universiteit Amsterdam

Why pointer tainting?

e Attacks

Exploit low-level memory errors

Buffer overflows

Dangling pointers

Format strings

Why pointer tainting?

e Attacks

Exploit low-level memory errors

Buffer overflows

Dangling pointers

Format strings

Control-diverting

Why pointer tainting?

e Attacks

Exploit low-level memory errors

Buffer overflows

Dangling pointers

Format strings

Control-diverting

Non-control-diverting

Why pointer tainting?

* Keyloggers, etc.

e Attacks

, Installed by users or by the way of exploits
Exploit low-level memory errors

e.g., trojan

Buffer overflows

Dangling pointers

Format strings

Control-diverting

Non-control-diverting

Why pointer tainting?

* Keyloggers, etc.

e Attacks

Exploit low-level memory errors

Installed by users or by the way of exploits

e.g., trojan

Buffer overflows

Dangling pointers

Format strings * Pointer tainting

 Capable of detecting

Control-diverti
e Memory corruption attacks

* Both control- and non-control-

Non-control-dive di :
iverting

* Privacy-breaching malware
e PROBLEMATIC

App 1

App 2

App 3

Guest OS

Emulator

Host OS

Basic tainting

memory taint tag

Basic tainting

memory taint tag

ret

i N (9p]

o o o

o o o

< <t <
Guest OS
Emulator
Host OS

Basic tainting

1. Mark network data

memory taint tag as tainted.

ret

App 1
App 2
App 3

Guest OS

Emulator

Host OS

Basic tainting

1. Mark network data

memory taint tag as tainted.

ret

App 1
App 2
App 3

Guest OS

Emulator

Host OS

Basic tainting

1. Mark network data

memory taint tag as tainted.

2. Propagate taint

ot through the OS.
— ~ ™
Q o o
o o o
< < <
Guest OS

Emulator

Host OS

Basic tainting

1. Mark network data

memory taint tag as tainted.

2. Propagate taint
through the OS.

ret

App 1
App 2
App 3

Guest OS

Emulator

Host OS

Basic tainting

1. Mark network data

memory taint tag as tainted.

2. Propagate taint
through the OS.

ret

App 1
App 2
App 3

Guest OS

Emulator

Host OS

Basic tainting

1. Mark network data

memory taint tag as tainted.

2. Propagate taint
through the OS.

ret

3. Alert for
dereferences due
to tainted jumps,

Guest OS function calls/

returns.

App 1
App 2
App 3

Emulator

Host OS

Basic tainting

memory taint tag

i N (9p]
o o o
o o o
< <t <
Guest OS
Emulator
— |
Host OS

1. Mark network data
as tainted.

2. Propagate taint
through the OS.

3. Alert for
dereferences due
to tainted jumps,
function calls/
returns.

App 1

App 2

App 3

Guest OS

Emulator

Host OS

Basic tainting

memory taint tag

1. Mark network data
as tainted.

2. Propagate taint
through the OS.

3. Alert for
dereferences due
to tainted jumps,
function calls/
returns.

Attacks: (in)effectiveness of basic tainting

volid serve(int £fd)

{ replymsg ¢
char *reply = ...;

char request[64];

read(fd, request, 128);
srv_send(fd, reply, 1024);

} reply

request

Attacks: (in)effectiveness of basic tainting

volid serve(int £d)

{ reply msg
char *reply = ...;
PLY ! server private |
char request[64]; data

read(fd, request, 128);

srv_send(fd, reply, 1024);

} reply

request

Pointer tainting

1. Mark network data as
tainted.

2. Propagate taint through
the OS.

e Attacks

3. Alert for dereferences
due to tainted jumps,
function calls/returns.

+ If p is tainted, raise an alert
on any dereference of p

Pointer tainting

1. Mark network data as
tainted.

2. Propagate taint through

the OS.
e Attacks * Keylogger detection
3. Alert for dereferences + If pis tainted, any
due to tainted jumps, dereference of p taints the

function calls/returns.]]
destination

+ If p is tainted, raise an alert
on any dereference of p

Attacks: effectiveness of pointer tainting

volid serve(int £fd)

{

char *reply = ...;

char request[64];

read(fd, request, 128);

srv_send(fd, reply,

1024);

reply msg

server private
data

e

reply

request

Pointer tainting

void serve(int £d)

{
char *reply;
char request;

read(fd, request, 1);

srv_send(fd, reply, 1);

. FPs likely

Pointer tainting: FPs likely

void serve(int f£fd)

{
char *reply;

char request;

read(fd, request, 1);
reply = to_lower[request];
srv_send(fd, reply, 1);

Pointer tainting: FPs likely

void serve(int f£fd)

{

char *reply;

char request;

read(fd, request, 1);

reply = to lower[request];

srv_send(fd, reply,

1);

0x143

0x142

0x141

0x100

0x63 (‘c’)

0x62 (‘b’)

0x61 (‘a’)

Pointer tainting: FPs likely

void serve(int f£fd)

{
char *reply;

char request;

read(fd, request, 1); Ox 143 0x63 (¢

reply = to lower[request];

srv_send(fd, reply, 1); 0x142 | 0x62 (‘b’)

} 0x141| 0x61 (‘@)

request = 0x41 ‘A’

0x100

Pointer tainting: FPs likely

void serve(int f£fd)

{

char *reply;

char request;

read(fd, request, 1);
reply = to lower[request];
srv_send(fd, reply, 1);

request = 0x41 ‘A’
addr = 0x100 + request
reply = *addr

0x143

0x142

0x141

0x100

0x63 (‘c’)

0x62 (‘b’)

0x61 (‘a’)

Pointer tainting: FPs likely

void serve(int f£fd)

{

char *reply;

char request;

read(fd, request, 1);

0x143
reply = to lower[request];
srv_send(fd, reply, 1); Oxlaz
0x141
}
request = 0x41 ‘A’ 0x100
0x100 + request
ﬁeply *addr

0x63 (‘c’)

0x62 (‘b’)

0x61 (‘a’)

Keylogger detection

memory taint tag

App 1
App 2

App 3

Guest OS

Emulator

Host OS

Potential malware

Internet browser

Keylogger detection

memory taint tag

App 1

App 2

App 3

Guest OS

Emulator

Host OS

Potential malware

Internet browser

Keylogger detection

memory taint tag

App 1

App 2

App 3

Guest OS

Emulator

Host OS

Potential malware

Internet browser

Keylogger detection

memory taint tag

App 1

App 2

App 3

Guest OS

Emulator

Host OS

Potential malware

Internet browser

Keylogger detection

memory taint tag

App 1

App 2

App 3

Guest OS

Emulator

Host OS

Potential malware

Internet browser

Keylogger detection

App 1
App 2
App 3

Guest OS

Emulator

Host OS

Potential malware

Internet browser

memory taint tag

Keylogger detection: FPs likely (again)

struct hlist head *head =
get list head(filename);

Keylogger detection: FPs likely (again)

struct hlist head *head =
get list head(filename);

—_

base

Keylogger detection: FPs likely (again)

struct hlist head *head =
get list head(filename);

—_

base index = hash(filename)

Keylogger detection: FPs likely (again)

struct hlist head *head =
get list head(filename);

—_

base index = hash(filename)

Keylogger detection: FPs likely (again)

struct hlist head *head =
get list head(filename);

—_ L

base index = hash(filename)

Keylogger detection: FPs likely (again)

struct hlist head *head =
get list head(filename);

struct dentry
*dentry = head->first;

Keylogger detection: FPs likely (again)

dentry of foo.txt
struct hlist head *head = next = NULL
get list head(filename); "
info

struct dentry
*dentry = head->first;

Keylogger detection: FPs likely (again)

dentry of foo.txt
struct hlist head *head = next = NULL
get list head(”“test.txt”); _
— — info
>

struct dentry

*dentry = head->first;

Keylogger detection: FPs likely (again)

dentry of foo.txt
struct hlist head *head = next = NULL
get list head(“test.txt”); _
- - info
>
struct dentry dentry of test.txt
*dentry = head->first; next

info

Keylogger detection: FPs likely (again)

dentry of foo.txt
struct hlist head *head = next = NULL

get list head(”“test.txt”); _
— — info I(—

struct dentry dentry of test.txt
*dentry = head->first; next
head info
—_—

Keylogger detection: FPs likely (again)

dentry of foo.txt
struct hlist head *head = next = NULL

get list head(“foo.txt”); ,
— — info |(—

struct dentry dentry of test.txt
*dentry = head->first; next
info
—

Keylogger detection: FPs likely (again)

dentry of foo.txt
struct hlist head *head = next = NULL

get list head(“foo.txt”); ,
— — info F—

struct dentry dentry of test.txt
*dentry = head->first; next
info
—

dentry = dentry->next;

return info = dentry->info;

Pointer tainting

1. Mark network data as
tainted.

2. Propagate taint through

the OS.
e Attacks * Keylogger detection
3. Alert for dereferences — If pis tainted, any
due to tainted jumps, dereference of p taints the
function calls/returns. destination
— If pis tainted, raise an alert

on any dereference of p

Experiment

B35
B\ \ \/\/
53
C program
Linux
QEMU
+

Pointer tainting
for keystrokes

Experiment

IRV

g e
S et
tar gzip
s cp
Linux
QEMU
+
Pointer tainting
for keystrokes

Keyloggers... false positives!

T T T T

clean 3 5

. Clirty - m——
png e e . _— y
cor oo s - oo -
s R S SESERIE IR [RREEEEE g | REE RERES (RR
apt-get [R IR I B B -
dastr/—————————— e e ——— S ————— o
gzp S S -
[e] =
sed I " " =
bash (no.4) I R e AR HE R R S
bash (no.3) R R R R -
run-parts - o e L S S -
bash ?no 2; - L R R SR -
bash (no. 1) [[BE [RS R -
console-kit-daemon - m- o B R Bt o .
lionss-files-2.7.s0 - mm-— e e N S I .
pam-unix.so 1 (] RIEEEEE R B R T B EEREEEEE R T TR —
syslogd f-am— 4 [B b R R | EE (R
hald o w1 HEHHEHH ISR I EEHEE T THE T T .
dhcdbd om0 12 11 - 1 Y O I] R
hald-addon-storage Famt mime | EESEE——-— R R R —

kernel ’[hkreadsI i s 3 7 &

I | |1

0 50

100
Intervals

Containment

White and black lists
ESP/EBP protection
Landmarking

Landmarking - motivation

Should NOT be tainted Should be tainted

struct dentry dentry = val = transl table[index]
prev dentry->next;

Landmarking - motivation

Should NOT be tainted Should be tainted

struct dentry dentry = val = transl table[index]
prev dentry->next;

affect tainted address
with a clean value

Landmarking - motivation

Should NOT be tainted

struct dentry dentry =
prev dentry->next;

affect tainted address
with a clean value

B = prev dentry + offset

dentry = *B

Should be tainted

val

transl table[index]

Landmarking - motivation

Should NOT be tainted

struct dentry dentry =
prev dentry->next;

affect tainted address
with a clean value

B = prev dentry + offset

dentry = *B

Should be tainted

val = transl table[index]

affect address
with a tainted value

Landmarking - motivation

Should NOT be tainted

struct dentry dentry =
prev dentry->next;

affect tainted address
with a clean value

B = prev dentry + offset

dentry = *B

Should be tainted

val

= transl table[index]

with a tainted value

affect address

address of an array
A + index*4

=*B

Full containment - results

cloan '

gzZp (N0.2) [dlirty M mmmm]
tar (no. 2) [s s S S SRR . (1111111 | R e -
PP b —_— =
o[B Ao T B T R e | I T T A e i
Far (N0) == N A AR - oo i
DASN (N0. 2) |1 R S 4
nautilus |-+ n— 1 T —— 4
Y@ i AR R RREE 0 FEEA PP REEREEEEE 80 1 L .
gnome-panel =i 111 A I+~ -
nrm-applet it i | | b S .
metacity fsim i LR (o [Tl SUREE SHRTUS S | LRSE | (IR (ITE'8 (R %]| RS oo -
hald-addon-input [e s | [SR T T — 4
kernel threads | o e
hald-addon-Storage (it HHHIE BRI LA FEREEEEEESR 44 - T 4
dhcdbd - pimmsmmms — ,]
PYERONZ.5 ot nman s L B i ||||n|n|n||n|unn\1n ———————————————————— s
gnome-screensaver [e A R I A R L .
Xorg [mwme IIIIIIIIIIIIIINIIIH\IHiI TR |||||||||||||||||| i IIIII||lII|III|II||I|IIIIIII|||II| | 1NN 1 AR D D |||||||||| 0w |I|||ItIIIIIlI||H||H| fi- -
gnome-terminal | i OO OO T O R S A -
bash (no. 1) LR """ LA g """"" e I""ﬂ" (I B § |~r|~|n|~ RN ; ——————————————————————— -
aptget = | | nww—— -
kernel i mrwwm i

200 1000 1200 1400

How bad are things?

Should NOT be tainted Should be tainted
struct hlist head *head = attributes =

1. addr:combine clean pointer with a tainted index

struct dentry *dentry = lower_case =
head->first; attributes->lower;

2 new_ addr: modify the resulting pointer with a
constant

Conclusions

* We have analyzed pointer tainting

— A popular technique for detecting memory
corruption attacks and keyloggers

* Not suited for detecting privacy-breaching
malware, like keyloggers
— False positives hard to avoid

* Could be applied to detect memory corruption
attacks
— Not suitable for x86 and Windows

Backup slides

Pollution due to tainted ESP/EBP

* |f ESP/EBP get tainted, taint spreads instantly

— mov eax, dword ptr [ebp + 08h]

— pop eax

e How ESP/EBP can become tainted?

— Linux kernel has numerous places where it can
happen,

e E.g., a common operation like opening a file ends up
tainting EBP,
* Details in the paper

Pollution due to pointer arithmetic

Should NOT be tainted

struct fd {
HANDLER handler;
STRING filename;
struct fd *next;

}i

A = address of filename
B = A — 0x0004

hl
fd2

*(B + 0x0000)
*(B + 0x0020)

Should be tainted

A = address of an array
index to be accessed
B =A + i*4

f=-
Il

Translated value:

val = *B

Pollution due to pointer arithmetic

Should NOT be tainted Should be tainted
struct fd {
HANDLER « L. .
How to distinguish between
STRING £
struct f these two cases?
}i
A = address of an array
A = address of filename i1 = index to be accessed
B =A — 0x0004 B =A + i*4
hl = *(B + 0x0000) Translated value:
fd2 = *(B + 0x0020) val = *B

Landmarking

typedef struct test t {
int i;
struct test t *next;
} test t, *ptest t;
ptest t table[256] = ..;

ptest t i1l = table[index]; // tainted
A = (table+index*sizeof(test t))

ptest t 12 = il->next; // clean
addr: *(A + offset(next))

int i3 = 1i1->i; // clean
addr: *(A)

Landmarking — why FPs?

e Possible scenarios:
— Assume eax contains a calculated tainted address

* |t can be copied and altered before dereference
* Then both values become tainted

— Addresses calculated directly
e an array A of struct {int a; int b;}
— Alindex].b: int b = *((char*)A+8*index+4)

* Very simplistic, but the same problem might hold for
gueues, stacks and hashtables

Landmarking — more problems

* False negatives

— Translation table containing structures instead of

single elements
attributes = transl table[kbd data];
lower case = attributes->lower;

* Much more problems in the paper

