

Pointless Tainting?

Evaluating the Practicality of Pointer Tainting

<u>Asia Slowinska</u>, Herbert Bos Vrije Universiteit Amsterdam

Attacks

Exploit low-level memory errors

Buffer overflows

Dangling pointers

Format strings

• Attacks
Exploit low-level memory errors
Buffer overflows

Dangling pointers

Format strings

Control-diverting

Attacks

Exploit low-level memory errors

Buffer overflows

Dangling pointers

Format strings

Control-diverting

Non-control-diverting

Attacks Exploit low-level memory errors **Buffer overflows** Dangling pointers Format strings Control-diverting Non-control-diverting

Keyloggers, etc.
 Installed by users or by the way of exploits
 e.g., trojan

Attacks
 Exploit low-level memory errors
 Buffer overflows

• Keyloggers, etc.
Installed by users or by the way of exploits

e.g., trojan

Dangling pointers

Format strings

Control-diverti

Non-control-dive

Pointer tainting

- Capable of detecting
 - Memory corruption attacks
 - Both control- and non-controldiverting
 - Privacy-breaching malware
- PROBLEMATIC

1. Mark network data as tainted.

1. Mark network data as tainted.

- 1. Mark network data as tainted.
- 2. Propagate taint through the OS.

- 1. Mark network data as tainted.
- 2. Propagate taint through the OS.

- 1. Mark network data as tainted.
- 2. Propagate taint through the OS.

- 1. Mark network data as tainted.
- 2. Propagate taint through the OS.
- 3. Alert for dereferences due to tainted jumps, function calls/returns.

- 1. Mark network data as tainted.
- 2. Propagate taint through the OS.
- 3. Alert for dereferences due to tainted jumps, function calls/returns.

- 1. Mark network data as tainted.
- 2. Propagate taint through the OS.
- 3. Alert for dereferences due to tainted jumps, function calls/returns.

Minos, MICRO 2004
Vigilante, SOSP 2005
Vigilante, NDSS 2005
Taintcheck, NDSS 2006
Argos, EuroSys 2006

Attacks: (in)effectiveness of basic tainting

```
void serve(int fd)
{
  char *reply = ...;
  char request[64];

  read(fd, request, 128);
  srv_send(fd, reply, 1024);
}
```


Attacks: (in)effectiveness of basic tainting

```
void serve(int fd)
{
  char *reply = ...;
  char request[64];

  read(fd, request, 128);
  srv_send(fd, reply, 1024);
}
```


Pointer tainting

- 1. Mark network data as tainted.
- 2. Propagate taint through the OS.

Attacks

- 3. Alert for dereferences due to tainted jumps, function calls/returns.
- + If p is tainted, raise an alert on any dereference of p

Pointer tainting

- 1. Mark network data as tainted.
- 2. Propagate taint through the OS.

Attacks

- 3. Alert for dereferences due to tainted jumps, function calls/returns.
- + If p is tainted, raise an alert on any dereference of p

- Keylogger detection
 - + If p is tainted, any dereference of p taints the destination

Attacks: effectiveness of pointer tainting

```
void serve(int fd)
{
   char *reply = ...;
   char request[64];

  read(fd, request, 128);
   srv_send(fd, reply, 1024);
}
```



```
void serve(int fd)
{
  char *reply;
  char request;

  read(fd, request, 1);

  srv_send(fd, reply, 1);
}
```

```
void serve(int fd)
{
  char *reply;
  char request;

  read(fd, request, 1);
  reply = to_lower[request];
  srv_send(fd, reply, 1);
}
```

```
void serve(int fd)
  char *reply;
  char request;
  read(fd, request, 1);
                                           0x143
                                                  0x63 ('c')
  reply = to lower[request];
                                           0x142
                                                  0x62 ('b')
  srv send(fd, reply, 1);
                                                  0x61 ('a')
                                           0x141
                                           0x100
```

```
void serve(int fd)
  char *reply;
  char request;
  read(fd, request, 1);
                                          0x143
                                                 0x63 ('c')
  reply = to lower[request];
                                          0x142
                                                 0x62 ('b')
  srv send(fd, reply, 1);
                                                 0x61 ('a')
                                          0x141
request = 0x41 'A'
                                          0x100
```

```
void serve(int fd)
  char *reply;
  char request;
  read(fd, request, 1);
                                         0x143
                                                0x63 ('c')
  reply = to lower[request];
                                         0x142
                                                0x62 ('b')
  srv send(fd, reply, 1);
                                                0x61 ('a')
                                         0x141
request = 0x41 'A'
                                         0x100
addr = 0x100 + request
reply = *addr
```

```
void serve(int fd)
    char *reply;
    char request;
    read(fd, request, 1);
                                         0x143
                                                0x63 ('c')
    reply = to lower[request];
                                                0x62 ('b')
                                         0x142
    srv send(fd, reply, 1);
                                                0x61 ('a')
                                         0x141
 request = 0x41 'A'
                                         0x100
= 0x100 + request
 reply = *addr
```


Keylogger detection: FPs likely (again)

```
struct hlist_head *head =
  get_list_head(filename);
```

Keylogger detection: FPs likely (again)

```
struct hlist_head *head =
  get_list_head(filename);
```


Keylogger detection: FPs likely (again)

```
struct hlist_head *head =
  get_list_head(filename);
```



```
struct hlist_head *head =
  get_list_head(filename);
```



```
struct hlist_head *head =
  get_list_head(filename);
```



```
struct hlist_head *head =
   get_list_head(filename);

struct dentry
  *dentry = head->first;
```

```
struct hlist_head *head =
    get_list_head(filename);

struct dentry
    *dentry = head->first;

dentry of foo.txt
    next = NULL
    info
```

```
struct hlist_head *head =
    get_list_head("test.txt");

struct dentry
    *dentry = head->first;

dentry of foo.txt
    next = NULL
    info
```

```
struct hlist_head *head =
    get_list_head("test.txt");

struct dentry
    *dentry = head->first;

dentry of foo.txt
    next = NULL
    info

dentry of foo.txt
    next = NULL
    info

dentry of foo.txt
    next = next
```

```
struct hlist_head *head =
    get_list_head("test.txt");

struct dentry
    *dentry = head->first;

    head

    dentry of foo.txt

    next = NULL
    info

    dentry of foo.txt

    next = null
    info

    dentry of foo.txt

    head
    info
```

```
struct hlist_head *head =
    get_list_head("foo.txt");

struct dentry
    *dentry = head->first;

dentry of foo.txt

next = NULL

info

dentry of foo.txt

next = NULL

info

info

info
```

```
struct hlist_head *head =
    get_list_head("foo.txt");

struct dentry
    *dentry = head->first;

dentry of foo.txt

next = NULL

info

dentry of foo.txt

next = NULL

info

dentry of foo.txt

info

dentry = next = next

info

dentry of foo.txt

next = next = next

info

dentry of foo.txt

next = next = next

info

dentry of foo.txt

next = null

info

dentry of foo.txt

next = null

info

dentry of foo.txt

next = null

info

dentry of test.txt

next = null

info

dentry of foo.txt

next = null

info

dentry of foo.txt

next = null

info

dentry of test.txt

next = null

next = null

info

dentry of test.txt

next = null

info

dentry of foo.txt

next = null

next =
```

Pointer tainting

- 1. Mark network data as tainted.
- 2. Propagate taint through the OS.

Attacks

- 3. Alert for dereferences due to tainted jumps, function calls/returns.
- If p is tainted, raise an alert on any dereference of p

- Keylogger detection
 - If p is tainted, any dereference of p taints the destination

Experiment

Experiment

Keyloggers... false positives!

Containment

- White and black lists
- ESP/EBP protection
- Landmarking

•

Should NOT be tainted

```
prev dentry->next;
```

Should be tainted

```
struct dentry = val = transl table[index]
```

Should NOT be tainted

```
struct dentry dentry =
   prev_dentry->next;
```

affect tainted address with a **clean** value

Should be tainted

```
val = transl_table[index]
```

Should NOT be tainted

```
struct dentry dentry =
   prev_dentry->next;
```

affect tainted address with a **clean** value

B = prev_dentry + offset

```
dentry = *B
```

Should be tainted

```
val = transl_table[index]
```

Should NOT be tainted

```
struct dentry dentry =
   prev_dentry->next;
```

affect tainted address with a **clean** value

B = prev_dentry + offset

```
dentry = *B
```

Should be tainted

```
val = transl_table[index]
```

affect address with a **tainted** value

Should NOT be tainted

```
struct dentry dentry =
  prev_dentry->next;
```

affect tainted address with a **clean** value

```
B = prev_dentry + offset
```

$$dentry = *B$$

Should be tainted

```
val = transl_table[index]
```

affect address with a **tainted** value

```
A = address of an array
B = A + index*4
```

$$val = *B$$

Full containment - results

How bad are things?

Should NOT be tainted

struct hlist_head *head = d hash(parent, hash);

Should be tainted

```
attributes =
  transl_table[kbd_data];
```

1. addr: combine clean pointer with a tainted index

2 new_addr: modify the resulting pointer with a constant

Conclusions

- We have analyzed pointer tainting
 - A popular technique for detecting memory corruption attacks and keyloggers
- Not suited for detecting privacy-breaching malware, like keyloggers
 - False positives hard to avoid
- Could be applied to detect memory corruption attacks
 - Not suitable for x86 and Windows

Backup slides

Pollution due to tainted ESP/EBP

- If ESP/EBP get tainted, taint spreads instantly
 - mov eax, dword ptr [ebp + 08h]
 - pop eax
- How ESP/EBP can become tainted?
 - Linux kernel has numerous places where it can happen,
 - E.g., a common operation like opening a file ends up tainting EBP,
 - Details in the paper

Pollution due to pointer arithmetic

Should NOT be tainted Should be tainted struct fd { HANDLER handler; STRING filename; struct fd *next; **}**; A = address of an array i = index to be accessed A = address of filename $B = A - 0 \times 0004$ $\mathbf{B} = \mathbf{A} + \mathbf{i} * \mathbf{4}$ h1 = *(B + 0x0000)Translated value: fd2 = *(B + 0x0020)val = *B

Pollution due to pointer arithmetic

Should NOT be tainted Should be tainted struct fd { HANDLER How to distinguish between STRING f *next these two cases? struct f **}**; A = address of an array i = index to be accessed A = address of filename B = A - 0x0004 $\mathbf{B} = \mathbf{A} + \mathbf{i} * 4$ Translated value: h1 = *(B + 0x0000)fd2 = *(B + 0x0020)val = *B

Landmarking

```
typedef struct test t {
  int i;
  struct test t *next;
} test_t, *ptest_t;
ptest_t table[256] = ...;
ptest_t i1 = table[index];
                               // tainted
  A = (table+index*sizeof(test t))
ptest t i2 = i1->next;
                               // clean
  addr: *(A + offset(next))
int i3 = i1->i;
                               // clean
  addr: *(A)
```

Landmarking – why FPs?

- Possible scenarios:
 - Assume eax contains a calculated tainted address
 - It can be copied and altered before dereference
 - Then both values become tainted
 - Addresses calculated directly
 - an array A of struct {int a; int b;}
 - -A[index].b: int b = *((char*)A+8*index+4)
 - Very simplistic, but the same problem might hold for queues, stacks and hashtables

Landmarking – more problems

- False negatives
 - Translation table containing structures instead of single elements

```
attributes = transl_table[kbd_data];
lower_case = attributes->lower;
```

Much more problems in the paper