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Why pointer tainting?

* Keyloggers, etc.

e Attacks

Exploit low-level memory errors

Installed by users or by the way of exploits

e.g., trojan

Buffer overflows

Dangling pointers

Format strings * Pointer tainting

 Capable of detecting

Control-diverti
e Memory corruption attacks

* Both control- and non-control-

Non-control-dive di :
iverting

* Privacy-breaching malware
e PROBLEMATIC
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char *reply = ...;
PLY ! server private |
char request[64]; data
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srv_send(fd, reply, 1024);

} reply

request
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Attacks: effectiveness of pointer tainting

volid serve(int £fd)

{

char *reply = ...;

char request[64];

read(fd, request, 128);

srv_send(fd, reply,

1024);

reply msg

server private
data

e

reply

request




Pointer tainting

void serve(int £d)

{
char *reply;
char request;

read(fd, request, 1);

srv_send(fd, reply, 1);

. FPs likely



Pointer tainting: FPs likely

void serve(int f£fd)

{
char *reply;

char request;

read(fd, request, 1);
reply = to_lower[request];
srv_send(fd, reply, 1);



Pointer tainting: FPs likely

void serve(int f£fd)

{

char *reply;

char request;

read(fd, request, 1);

reply = to lower[request];

srv_send(fd, reply,

1);

0x143

0x142

0x141

0x100

0x63 (‘c’)

0x62 (‘b’)

0x61 (‘a’)




Pointer tainting: FPs likely

void serve(int f£fd)

{
char *reply;

char request;

read(fd, request, 1); Ox 143 0x63 (¢

reply = to lower[request];

srv_send(fd, reply, 1); 0x142 | 0x62 (‘b’)

} 0x141| 0x61 (‘@)

request = 0x41 ‘A’

0x100




Pointer tainting: FPs likely

void serve(int f£fd)

{

char *reply;

char request;

read(fd, request, 1);
reply = to lower[request];
srv_send(fd, reply, 1);

request = 0x41 ‘A’
addr = 0x100 + request
reply = *addr

0x143

0x142

0x141

0x100

0x63 (‘c’)

0x62 (‘b’)

0x61 (‘a’)




Pointer tainting: FPs likely

void serve(int f£fd)

{

char *reply;

char request;

read(fd, request, 1);

0x143
reply = to lower[request];
srv_send(fd, reply, 1); Oxlaz
0x141
}
request = 0x41 ‘A’ 0x100
0x100 + request
ﬁeply *addr

0x63 (‘c’)

0x62 (‘b’)

0x61 (‘a’)
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Keylogger detection: FPs likely (again)

dentry of foo.txt
struct hlist head *head = next = NULL

get list head(“foo.txt”); ,
— — info F—

struct dentry dentry of test.txt
*dentry = head->first; next
info
—

dentry = dentry->next;

return info = dentry->info;



Pointer tainting

1. Mark network data as
tainted.

2. Propagate taint through

the OS.
e Attacks * Keylogger detection
3. Alert for dereferences — If pis tainted, any
due to tainted jumps, dereference of p taints the
function calls/returns. destination
— If pis tainted, raise an alert

on any dereference of p
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Keyloggers... false positives!
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Containment

White and black lists
ESP/EBP protection
Landmarking
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Landmarking - motivation

Should NOT be tainted

struct dentry dentry =
prev dentry->next;

affect tainted address
with a clean value

B = prev dentry + offset

dentry = *B

Should be tainted

val

= transl table[index]

with a tainted value

affect address

address of an array
A + index*4

=*B



Full containment - results
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How bad are things?

Should NOT be tainted Should be tainted
struct hlist head *head = attributes =

1. addr:combine clean pointer with a tainted index

struct dentry *dentry = lower_case =
head->first; attributes->lower;

2 new_ addr: modify the resulting pointer with a
constant



Conclusions

* We have analyzed pointer tainting

— A popular technique for detecting memory
corruption attacks and keyloggers

* Not suited for detecting privacy-breaching
malware, like keyloggers
— False positives hard to avoid

* Could be applied to detect memory corruption
attacks
— Not suitable for x86 and Windows
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Pollution due to tainted ESP/EBP

* |f ESP/EBP get tainted, taint spreads instantly

— mov eax, dword ptr [ebp + 08h]

— pop eax

e How ESP/EBP can become tainted?

— Linux kernel has numerous places where it can
happen,

e E.g., a common operation like opening a file ends up
tainting EBP,
* Details in the paper



Pollution due to pointer arithmetic

Should NOT be tainted

struct fd {
HANDLER handler;
STRING filename;
struct fd *next;

}i

A = address of filename
B = A — 0x0004

hl
fd2

*(B + 0x0000)
*(B + 0x0020)

Should be tainted

A = address of an array
index to be accessed
B =A + i*4

f=-
Il

Translated value:

val = *B



Pollution due to pointer arithmetic

Should NOT be tainted Should be tainted
struct fd {
HANDLER « L. .
How to distinguish between
STRING £
struct f these two cases?
}i
A = address of an array
A = address of filename i1 = index to be accessed
B =A — 0x0004 B =A + i*4
hl = *(B + 0x0000) Translated value:
fd2 = *(B + 0x0020) val = *B



Landmarking

typedef struct test t {
int i;
struct test t *next;
} test t, *ptest t;
ptest t table[256] = ..;

ptest t i1l = table[index]; // tainted
A = (table+index*sizeof(test t))

ptest t 12 = il->next; // clean
addr: *(A + offset(next))

int i3 = 1i1->i; // clean
addr: *(A)



Landmarking — why FPs?

e Possible scenarios:
— Assume eax contains a calculated tainted address

* |t can be copied and altered before dereference
* Then both values become tainted

— Addresses calculated directly
e an array A of struct {int a; int b;}
— Alindex].b: int b = *((char*)A+8*index+4)

* Very simplistic, but the same problem might hold for
gueues, stacks and hashtables



Landmarking — more problems

* False negatives

— Translation table containing structures instead of

single elements
attributes = transl table[kbd data];
lower case = attributes->lower;

* Much more problems in the paper



