Fair and Timely Scheduling via Cooperative
Polling

Charles 'Buck’ Krasic! ~ Mayukh Saubhasik’
Anirban Sinha' Ashvin Goel?

"Department of Computer Science
University of British Columbia

2Department of Electrical and Computer Engineering
University of Toronto

UBC| 655
== (1 g

Krasic, Saubhasik, Sinha, Goel Fair and Timely Scheduling via Cooperative Polling

Outline

0 Introduction
@ Problem Description
@ Previous Approaches

9 Our Approach
@ Design
@ Implementation

Q Results

@ Timeliness
@ Fairness

Krasic, Saubhasik, Sinha, Goel Fair and Timely Scheduling via Cooperative Polling

Introduction
Problem Description
Previous Approaches

Outline

0 Introduction
@ Problem Description

aubhasik, Sinha, Goel Fair a

Introduction
Problem Description
Previous Approaches

Introduction

@ Scheduling in commodity operating systems traditionally
favors throughput over timeliness
e Time sensitive applications are poorly served unless they
have low requirements.
@ Our approach improves timeliness while preserving
benefits of the best effort model
e Application model for time sensitive applications
e Kernel scheduler the provides fairness and timeliness
o New system call called coop_poll that supports cooperation
between application and kernel level schedulers

@ Timing improvements of up to two orders of magnitude

Krasic, Saubhasik, Sinha, Goel Fair and Timely Scheduling via Cooperative Polling

Introduction
Problem Description
Previous Approaches

Time Sensitive Applications

@ Hard real-time
e aircraft controllers, airbag controllers
@ Soft real-time

@ games, graphical animation (visualizations, desktops, etc.)
e continuous media (audio and video)

e distributed computing services (e.g. SLASs)

e user level drivers

Krasic, Saubhasik, Sinha, Goel Fair Timely Scheduling via Cooperative Polling

Introduction
Problem Description
Previous Approaches

Elements of good scheduling

@ Throughout
e work conserving
o low overhead

@ Fairness

e Max-min fairness is common in best effort systems.
e Can be resource centric (QoS: CPU time, bandwidth, etc.)
or application centric (QoE: PSNR, MOS, etc.)

@ Timeliness

o Release-Time, Deadline, Jitter
e Tardiness: difference between release time and
corresponding activation.

Krasic, Saubhasik, Sinha, Goel Fair and Timely Scheduling via Cooperative Polling

Introduction

Problem Description
Previous Approaches

Critical Path of Tardiness

Timer Latency ~ Preemption Latency Scheduling Latency
| ; \
I

I I i Time
Interrupt Another application
Handler

scheduled
Wall-clock time

Timer Interrupt Scheduler Application scheduled
event

(activation)
@ Timer Latency
e High resolution clock, timers.
@ Preemption Latency

e Fully preemptable kernel.
@ Scheduling Latency

e Our approach.

UBC'

L)
.9
\Qam&

Krasic, Saubhasik, Sinha, Goel

Fair imely Scheduling via Cooperative Polling

Introduction

Problem Description
Previous Approaches

0 Introduction

@ Previous Approaches

Saubhasik, Sinha, Goel i [duling via Cooperative Polli

Introduction
Problem Description
Previous Approaches

Classic Real-time

@ Priority Based.

e Starvation, inversions.
@ Reservation based.

e Very hard to estimate resource requirements.
@ Tune the reservation parameter via Feedback.

e Can lead to instability for adaptive applications.
e Composing feedback controllers is hard.

Krasic, Saubhasik, Sinha, Goel Fair and Timely Scheduling via Cooperative Polling

Our Approach Design
Implementation

Outline

9 Our Approach
@ Design

aubhasik, Sinha, Goel Fair a

duling via Cooperative Polli

Our Approach Design
Implementation

Key ldeas

@ Time-sensitive applications can cooperate with kernel and
each other

e Applications include a user level scheduler
@ Inform kernel of timing needs
@ new system call: coop_poll ()
@ Kernel facilitates and coordinates this information
exchange

@ Kernel offers protection against mis-behaving applications

Krasic, Saubhasik, Sinha, Goel Fair and Timely Scheduling via Cooperative Polling

Our Approach Design
Implementation

Architecture

User Space

Cooperative Threads Best-effort Threads

Application
Event Scheduler

Thread 1, Group A

Y
Kernel Space coop_poll

¥ Thread Scheduler
Cooperative Fair-share
Release times User Virtual times Virtual times
(per-thread (per-thread (per-group)
across groups) within group)

Group D

Our Approach Design
Implementation

User Level Programming Model

@ Reactive event loop

e Two types of events - Best Effort, Timer
@ Short running events

@ stack-rip loops or use coroutines
e Use non-blocking 1/0 as much as possible.
@ Adaptive applications
e reduce events (best-effort) during overload

Krasic, Saubhasik, Sinha, Goel Fair and Timely Scheduling via Cooperative Polling

Our Approach Design
Implementation

Application Example

recv_video_frame (player, frame) {
frame.decode_event = {
type = BEST_EFFORT,
user_virtual_time = decoder_get_virtual_time (frame),
callback.fn = decode_video_frame };
submit (frame.decode_event)
frame.expire_event= ({
type = TIMER,
release = decoder_get_release_time (frame),
callback.fn = expire_video_frame };
submit (frame.expire_event);

Krasic, Saubhasik, Sinha, Goel Fair Timely Scheduling via Cooperative Polli

Our Approach Design
Implementation

Application Example (cont’d)

decode_video_frame (player, frame) {
cancel (player.loop, frame.expire_event);

if (decompress (frame) != DONE) {
submit (frame.decode_event) ;
return;

}
frame.display_event = ({
type = TIMER;
release = player.start + frame.pts;
callback.fn = display_video_frame };
submit (frame.display_event);
}
expire_video_frame (player, frame) {
cancel (frame.decode_event) ;
}
display_video_frame (player, frame) {
put_image (player.display, frame.image);

Krasic, Saubhasik, Sinha, Goel Fair [uling via Cooperative Polling

Our Approach Design
Implementation

Kernel Fairshare Scheduler

@ Weighted fairshare scheduler.
@ Virtual time:
e Use high-resolution accounting to measure execution time.
e Vitual time = weight x measured.
o Not allowed to accumulate virtual time by sleeping.
@ Task with lowest virtual time picked for execution.
@ Timeslice = Period / Number of runnable tasks.
e lower bound enforced to prevent excessive context switches

Krasic, Saubhasik, Sinha, Goel Fair and Timely Scheduling via Cooperative Polling

Our Approach Design
Implementation

Coop_Poll Call

@ Coop_Poll connects user level scheduler to kernel
scheduler.
o Input «— Earliest local release-time & user virtual time.
o Output — CPU-wide earliest release-time & group-wide
earliest virtual time.

Krasic, Saubhasik, Sinha, Goel Fair Timely Scheduling via Cooperative Polling

Our Approach Design
Implementation

Coop_Poll in the kernel scheduler

@ Timeslice calculation (amended)
e Timeslice = min(Period/N, Time till next release-time)
e Sets output param of coop_poll.

@ fairness vs timeliness?

o If release-time is due override fairness choice, but force
task to yield quickly: set output release-time = now.
o Allows temporary unfairness, subject to following limit.

Krasic, Saubhasik, Sinha, Goel Fair and Timely Scheduling via Cooperative Polling

Our Approach Design
Implementation

Mis-behaving Applications

@ Un-cooperative behavior:
e Does not yield on time (now — release time > coop slack).
e Non-cooperative yield (page fault, IO, sleep, i.e. not
coop_poll).
e Exceeds unfairness threshold (Task VT — Min VT >
Unfairness Threshold).

@ Kernel demotes task to best-effort status

e Temporary effect, status regained next time coop_poll is
called.

Krasic, Saubhasik, Sinha, Goel Fair and Timely Scheduling via Cooperative Polling

Our Approach Design
Implementation

Coop_Poll in the user level event scheduler

@ The event loop yields the CPU only via coop_poll.
@ The output parameters of coop_poll are translated into
proxy events:
e Two proxies: timer and best-effort.
@ Proxy events yield the CPU via coop_poll.
@ Application defined fairness via thread groups.

@ Whole group shares the same virtual time.

e User defined fairness within group.
@ Best-effort events contain application specified virtual time.
@ e.g. cumulative fps, cumulative utility

Krasic, Saubhasik, Sinha, Goel Fair and Timely Scheduling via Cooperative Polling

Our Approach Design
Implementation

Outline

9 Our Approach

@ Implementation

Krasic, Saubhasik, Sinha, Goel Timely Scheduling via Cooperative Polli

Our Approach Design
Implementation

Scheduler Implementation

@ Implemented scheduler and coop poll in Linux kernel
e Two versions: pre and post CFS (2.6.22 and 2.6.25).
e Simple tickless design:

@ one shot high resolution timers.
@ High resolution accounting.

e Previously prototyped approach at user level.

Krasic, Saubhasik, Sinha, Goel Fair and Timely Scheduling via Cooperative Polling

Our Approach Design
Implementation

Cooperative Applications

@ QStream Adaptive Video Streaming
e ideal candidate - event based, adaptive, short running
events.
@ X11 display server.
Event based, but non-adaptive.
Extend Xsync to support high res timers
Incorporate integrated Coop_Poll
0.3% LOC changed (Excluding extensions).

Krasic, Saubhasik, Sinha, Goel Fair and Timely Scheduling via Cooperative Polling

Timeliness
Results EUGERS

Q Results

@ Timeliness

Saubhasik, Sinha, Goel i [duling via Cooperative Polli

Timeliness
Results EUGERS

Experimental Setup

@ Pentium 4 3.0 Ghz, Nvidia NV43 GPU

@ Kernel based on Linux 2.6.25, Preemption,
High-Resolution Timers, SMP enabled

@ 20 ms global period, 20 ms unfairness threshold, 100 us
min timeslice, 2 ms coop_slack

@ Compare with CFS and Linux real-time.

Krasic, Saubhasik, Sinha, Goel Fair and Timely Scheduling via Cooperative Polling

Timeliness
Results EUGERS

Baseline Timeliness

0.8

0.6 -

0.4 -

Tardiness CDF

0.2 -

0.01 0.1 1 10 100 1000
Time (milliseconds)

Coop Realtime ——— Cfs

@ Single time-sensitive thread + 4 Background loads.

@ Gives reference point for application granularity and
best-case timeliness.

Krasic, Saubhasik, Sinha, Goel Fair Timely Scheduling via Cooperative Polling

Timeliness

Results EUGERS

Timeliness with Multiple Adaptive Applications

1 —
I
0.8 ; /
w ..' I|
=] H)
S 06 |
g P
= _']
§ 04 : {
& ; |
[|
0.2 : |
.)
0 "
1 10 100 1000

[N
Time (millizaconds)

Linux CFS ——
Linux Realtima -------

Co%p poll, muttiple groups
oop poll, single group «--=---

@ 8 time-sensitive threads + 4 Background loads.
@ Linux real-time priority doesn’t help here.

Fair and Timely Scheduling via Cooperative Polling

Krasic, Saubhasik, Sinha, Goel

Timeliness
Results EUGERS

Non-Adaptive Application(X11 Display Server)

4

w
=) /
= 06 K
T 04 i
&5)
i i
0.z /
P
0 i —
0.001 0.01 01 1 10 100 1000

Time (millizaconds)

Kservar with coop poll,
Ksorver with sync -------

@ 8 Video Players(X11 enabled) + 4 Background loads.
@ Player performance (not shown) similar to previous case.

Krasic, Saubhasik, Sinha, Goel Fair and Timely Scheduling via Cooperative Polling

Timeliness
Results EUGERS

Mis-behaving Application

0.8 -

0.6 -

04 -

Tardiness CDF

0.2 -

0
0.001 0.01 0.1 1 10 100 1000
Time (milliseconds)

Mis-behaving thread
Rest of the threads -

Xserver

@ Same workload as before, 1 player delaying yields with
probability of 1%
e Random delay ranging from 0 ... 10 milliseconds.
@ Misbehaving task is the only one to suffer!

Krasic, Saubhasik, Sinha, Goel Fair and Timely Scheduling via Cooperative Polling

Timeliness
Results EUGERS

Limits of frequent context switching

@ Q: Why don’t we just use a high granularity periodic
scheduler?

@ e.g. Global period = 1 millisecond.

@ Coop tardiness is 5x better with 4x fewer context switches.

e Tardiness is still 5ms due to context switch plateau.
@ 9348 Context Switches/Second vs 2211 Context
Switches/Second.

Krasic, Saubhasik, Sinha, Goel Fair and Timely Scheduling via Cooperative Polling

Timeliness
Results Fairness

Q Results

@ Fairness

Saubhasik, Sinha, Goel i [duling via Cooperative Polli

Timeliness
Results Fairness

Fairness for Adaptive Applications

.

CPU Lioad (%)
oo

S0 1000 150 200 250 300

Video Position ()

@ 8 Video players + 4 Background loads.

@ Coop fairshare scheduler shown, results with Linux CFS
(not shown) are similar.

@ Coop achieves timeliness and fairness.

Krasic, Saubhasik, Sinha, Goel Fair and Timely Scheduling via Cooperative Polling

Timeliness
Results Fairness

CPU fairness != Quality Fairness

Bitrate (Mbits/s)

500 10 150 2000 250 300

Video Position (5)

@ FPS per video (left graph) is chaotic.

@ Video Bitrates (right graph) are indicative of videos’ busty
requirements. C

Krasic, Saubhasik, Sinha, Goel Fair Timely Scheduling via Cooperative Polling

Timeliness
Results Fairness

Application-centric fairness

Frames per secon

14
. |
2 | ‘
' e 00
20 z 10 1 ”p ‘ 1 ‘
& |‘
S w o \‘ ‘ H
ER |\-{‘”\|r ‘ ‘ H\‘| ‘ ,|r I|“||
Z s ‘ i “ | |
4
2
0 0
S0 0 150 200 250 300 S0 0 10 200 250 300
Video Position (s) Videa Position (s)

Equal user defined quality (fps) via user scheduling
All players run in same Coop group

e CPU within group allocated according to user specified
virtual time.

Krasic, Saubhasik, Sinha, Goel Fair Timely Scheduling via Cooperative Polling

Summary

Summary

@ Cooperative Polling is:

e Split level user-kernel scheduling

o Kernel combines fair sharing base with timeliness through
cooperative-polling

o Kernel facilitates cooperation and protects against
misbehaviour.

@ Supports resource and application centric fairness

@ Results indicate sub-millisecond timing requirements are
attainable.

@ Reconciles the conflict between best-effort and
time-sensitive applications.

Krasic, Saubhasik, Sinha, Goel Fair and Timely Scheduling via Cooperative Polling

Summary

Future Work

@ Multiprocessor evaluation

@ Integrate with thread library such as GNU Pth

@ Other resource types—storage, network, memory.
@ Implementing the concept in a hypervisor.

@ Move of fast-path coop_po11 to Linux vsyscall.
@ Support for Linux scheduler groups/cgroups.

Krasic, Saubhasik, Sinha, Goel Fair and Timely Scheduling via Cooperative Polling

Summary

Questions?

@ All of our code is open source: http://gstream.org/
@ Please visit our poster/demo at the poster session.

Krasic, Saubhasik, Sinha, Goel Fair Timely Scheduling via Cooperative Polling

http://qstream.org/

	Introduction
	Problem Description
	Previous Approaches

	Our Approach
	Design
	Implementation

	Results
	Timeliness
	Fairness

	Summary

