
Introduction
Our Approach

Results
Summary

Fair and Timely Scheduling via Cooperative
Polling

Charles ’Buck’ Krasic1 Mayukh Saubhasik1

Anirban Sinha1 Ashvin Goel2

1Department of Computer Science
University of British Columbia

2Department of Electrical and Computer Engineering
University of Toronto

Krasic, Saubhasik, Sinha, Goel Fair and Timely Scheduling via Cooperative Polling

Introduction
Our Approach

Results
Summary

Outline

1 Introduction
Problem Description
Previous Approaches

2 Our Approach
Design
Implementation

3 Results
Timeliness
Fairness

Krasic, Saubhasik, Sinha, Goel Fair and Timely Scheduling via Cooperative Polling

Introduction
Our Approach

Results
Summary

Problem Description
Previous Approaches

Outline

1 Introduction
Problem Description
Previous Approaches

2 Our Approach
Design
Implementation

3 Results
Timeliness
Fairness

Krasic, Saubhasik, Sinha, Goel Fair and Timely Scheduling via Cooperative Polling

Introduction
Our Approach

Results
Summary

Problem Description
Previous Approaches

Introduction

Scheduling in commodity operating systems traditionally
favors throughput over timeliness

Time sensitive applications are poorly served unless they
have low requirements.

Our approach improves timeliness while preserving
benefits of the best effort model

Application model for time sensitive applications
Kernel scheduler the provides fairness and timeliness
New system call called coop_poll that supports cooperation
between application and kernel level schedulers

Timing improvements of up to two orders of magnitude

Krasic, Saubhasik, Sinha, Goel Fair and Timely Scheduling via Cooperative Polling

Introduction
Our Approach

Results
Summary

Problem Description
Previous Approaches

Time Sensitive Applications

Hard real-time
aircraft controllers, airbag controllers

Soft real-time
games, graphical animation (visualizations, desktops, etc.)
continuous media (audio and video)
distributed computing services (e.g. SLAs)
user level drivers

Krasic, Saubhasik, Sinha, Goel Fair and Timely Scheduling via Cooperative Polling

Introduction
Our Approach

Results
Summary

Problem Description
Previous Approaches

Elements of good scheduling

Throughout
work conserving
low overhead

Fairness
Max-min fairness is common in best effort systems.
Can be resource centric (QoS: CPU time, bandwidth, etc.)
or application centric (QoE: PSNR, MOS, etc.)

Timeliness
Release-Time, Deadline, Jitter
Tardiness: difference between release time and
corresponding activation.

Krasic, Saubhasik, Sinha, Goel Fair and Timely Scheduling via Cooperative Polling

Introduction
Our Approach

Results
Summary

Problem Description
Previous Approaches

Critical Path of Tardiness

Timer Latency
High resolution clock, timers.

Preemption Latency
Fully preemptable kernel.

Scheduling Latency
Our approach.

Krasic, Saubhasik, Sinha, Goel Fair and Timely Scheduling via Cooperative Polling

Introduction
Our Approach

Results
Summary

Problem Description
Previous Approaches

Outline

1 Introduction
Problem Description
Previous Approaches

2 Our Approach
Design
Implementation

3 Results
Timeliness
Fairness

Krasic, Saubhasik, Sinha, Goel Fair and Timely Scheduling via Cooperative Polling

Introduction
Our Approach

Results
Summary

Problem Description
Previous Approaches

Classic Real-time

Priority Based.
Starvation, inversions.

Reservation based.
Very hard to estimate resource requirements.

Tune the reservation parameter via Feedback.
Can lead to instability for adaptive applications.
Composing feedback controllers is hard.

Krasic, Saubhasik, Sinha, Goel Fair and Timely Scheduling via Cooperative Polling

Introduction
Our Approach

Results
Summary

Design
Implementation

Outline

1 Introduction
Problem Description
Previous Approaches

2 Our Approach
Design
Implementation

3 Results
Timeliness
Fairness

Krasic, Saubhasik, Sinha, Goel Fair and Timely Scheduling via Cooperative Polling

Introduction
Our Approach

Results
Summary

Design
Implementation

Key Ideas

Time-sensitive applications can cooperate with kernel and
each other

Applications include a user level scheduler
Inform kernel of timing needs

new system call: coop_poll()

Kernel facilitates and coordinates this information
exchange
Kernel offers protection against mis-behaving applications

Krasic, Saubhasik, Sinha, Goel Fair and Timely Scheduling via Cooperative Polling

Introduction
Our Approach

Results
Summary

Design
Implementation

Architecture

TimersBest-effort

Application
Event Scheduler

Cooperative Threads Best-effort Threads

User Space

Kernel Space

Thread Scheduler

Thread 5, Group D

Thread 4, Group D

Thread 3, Group C

Thread 2, Group B

Thread 1, Group A

Fair-share

Virtual times
(per-group)

G A

G C

G D

G B

U 5 R 5

Cooperative

 Group D

 Group C

Release times
(per-thread

across groups)

R 5

R 4

R 3

User Virtual times
(per-thread

within group)

U 4

U 5

coop_poll

Krasic, Saubhasik, Sinha, Goel Fair and Timely Scheduling via Cooperative Polling

Introduction
Our Approach

Results
Summary

Design
Implementation

User Level Programming Model

Reactive event loop
Two types of events - Best Effort, Timer
Short running events

stack-rip loops or use coroutines

Use non-blocking I/O as much as possible.
Adaptive applications

reduce events (best-effort) during overload

Krasic, Saubhasik, Sinha, Goel Fair and Timely Scheduling via Cooperative Polling

Introduction
Our Approach

Results
Summary

Design
Implementation

Application Example

recv_video_frame(player, frame) {
frame.decode_event = {
type = BEST_EFFORT,
user_virtual_time = decoder_get_virtual_time(frame),
callback.fn = decode_video_frame };

submit(frame.decode_event)
frame.expire_event= {

type = TIMER,
release = decoder_get_release_time(frame),
callback.fn = expire_video_frame };

submit(frame.expire_event);
}

Krasic, Saubhasik, Sinha, Goel Fair and Timely Scheduling via Cooperative Polling

Introduction
Our Approach

Results
Summary

Design
Implementation

Application Example (cont’d)
decode_video_frame(player, frame) {

cancel(player.loop, frame.expire_event);
if (decompress(frame) != DONE) {

submit(frame.decode_event);
return;

}
frame.display_event = {

type = TIMER;
release = player.start + frame.pts;
callback.fn = display_video_frame };

submit(frame.display_event);
}
expire_video_frame(player, frame) {

cancel(frame.decode_event);
}
display_video_frame(player, frame) {

put_image(player.display, frame.image);

}

Krasic, Saubhasik, Sinha, Goel Fair and Timely Scheduling via Cooperative Polling

Introduction
Our Approach

Results
Summary

Design
Implementation

Kernel Fairshare Scheduler

Weighted fairshare scheduler.
Virtual time:

Use high-resolution accounting to measure execution time.
Vitual time = weight × measured.
Not allowed to accumulate virtual time by sleeping.

Task with lowest virtual time picked for execution.
Timeslice = Period / Number of runnable tasks.

lower bound enforced to prevent excessive context switches

Krasic, Saubhasik, Sinha, Goel Fair and Timely Scheduling via Cooperative Polling

Introduction
Our Approach

Results
Summary

Design
Implementation

Coop_Poll Call

Coop_Poll connects user level scheduler to kernel
scheduler.

Input← Earliest local release-time & user virtual time.
Output→ CPU-wide earliest release-time & group-wide
earliest virtual time.

Krasic, Saubhasik, Sinha, Goel Fair and Timely Scheduling via Cooperative Polling

Introduction
Our Approach

Results
Summary

Design
Implementation

Coop_Poll in the kernel scheduler

Timeslice calculation (amended)
Timeslice = min(Period/N, Time till next release-time)
Sets output param of coop_poll.

fairness vs timeliness?
If release-time is due override fairness choice, but force
task to yield quickly: set output release-time = now.
Allows temporary unfairness, subject to following limit.

Krasic, Saubhasik, Sinha, Goel Fair and Timely Scheduling via Cooperative Polling

Introduction
Our Approach

Results
Summary

Design
Implementation

Mis-behaving Applications

Un-cooperative behavior:
Does not yield on time (now − release time > coop slack).
Non-cooperative yield (page fault, IO, sleep, i.e. not
coop_poll).
Exceeds unfairness threshold (Task VT − Min VT >
Unfairness Threshold).

Kernel demotes task to best-effort status
Temporary effect, status regained next time coop_poll is
called.

Krasic, Saubhasik, Sinha, Goel Fair and Timely Scheduling via Cooperative Polling

Introduction
Our Approach

Results
Summary

Design
Implementation

Coop_Poll in the user level event scheduler

The event loop yields the CPU only via coop_poll.
The output parameters of coop_poll are translated into
proxy events:

Two proxies: timer and best-effort.
Proxy events yield the CPU via coop_poll.

Application defined fairness via thread groups.
Whole group shares the same virtual time.
User defined fairness within group.

Best-effort events contain application specified virtual time.
e.g. cumulative fps, cumulative utility

Krasic, Saubhasik, Sinha, Goel Fair and Timely Scheduling via Cooperative Polling

Introduction
Our Approach

Results
Summary

Design
Implementation

Outline

1 Introduction
Problem Description
Previous Approaches

2 Our Approach
Design
Implementation

3 Results
Timeliness
Fairness

Krasic, Saubhasik, Sinha, Goel Fair and Timely Scheduling via Cooperative Polling

Introduction
Our Approach

Results
Summary

Design
Implementation

Scheduler Implementation

Implemented scheduler and coop poll in Linux kernel
Two versions: pre and post CFS (2.6.22 and 2.6.25).
Simple tickless design:

one shot high resolution timers.
High resolution accounting.

Previously prototyped approach at user level.

Krasic, Saubhasik, Sinha, Goel Fair and Timely Scheduling via Cooperative Polling

Introduction
Our Approach

Results
Summary

Design
Implementation

Cooperative Applications

QStream Adaptive Video Streaming
ideal candidate - event based, adaptive, short running
events.

X11 display server.
Event based, but non-adaptive.
Extend Xsync to support high res timers
Incorporate integrated Coop_Poll
0.3% LOC changed (Excluding extensions).

Krasic, Saubhasik, Sinha, Goel Fair and Timely Scheduling via Cooperative Polling

Introduction
Our Approach

Results
Summary

Timeliness
Fairness

Outline

1 Introduction
Problem Description
Previous Approaches

2 Our Approach
Design
Implementation

3 Results
Timeliness
Fairness

Krasic, Saubhasik, Sinha, Goel Fair and Timely Scheduling via Cooperative Polling

Introduction
Our Approach

Results
Summary

Timeliness
Fairness

Experimental Setup

Pentium 4 3.0 Ghz, Nvidia NV43 GPU
Kernel based on Linux 2.6.25, Preemption,
High-Resolution Timers, SMP enabled
20 ms global period, 20 ms unfairness threshold, 100 us
min timeslice, 2 ms coop_slack
Compare with CFS and Linux real-time.

Krasic, Saubhasik, Sinha, Goel Fair and Timely Scheduling via Cooperative Polling

Introduction
Our Approach

Results
Summary

Timeliness
Fairness

Baseline Timeliness

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1 10 100 1000

T
ar

di
ne

ss
 C

D
F

Time (milliseconds)

Coop Realtime Cfs

Single time-sensitive thread + 4 Background loads.
Gives reference point for application granularity and
best-case timeliness.

Krasic, Saubhasik, Sinha, Goel Fair and Timely Scheduling via Cooperative Polling

Introduction
Our Approach

Results
Summary

Timeliness
Fairness

Timeliness with Multiple Adaptive Applications

8 time-sensitive threads + 4 Background loads.
Linux real-time priority doesn’t help here.

Krasic, Saubhasik, Sinha, Goel Fair and Timely Scheduling via Cooperative Polling

Introduction
Our Approach

Results
Summary

Timeliness
Fairness

Non-Adaptive Application(X11 Display Server)

8 Video Players(X11 enabled) + 4 Background loads.
Player performance (not shown) similar to previous case.

Krasic, Saubhasik, Sinha, Goel Fair and Timely Scheduling via Cooperative Polling

Introduction
Our Approach

Results
Summary

Timeliness
Fairness

Mis-behaving Application

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.001 0.01 0.1 1 10 100 1000

T
ar

di
ne

ss
 C

D
F

Time (milliseconds)

Mis-behaving thread
Rest of the threads

Xserver

Same workload as before, 1 player delaying yields with
probability of 1%

Random delay ranging from 0 . . . 10 milliseconds.
Misbehaving task is the only one to suffer!

Krasic, Saubhasik, Sinha, Goel Fair and Timely Scheduling via Cooperative Polling

Introduction
Our Approach

Results
Summary

Timeliness
Fairness

Limits of frequent context switching

Q: Why don’t we just use a high granularity periodic
scheduler?
e.g. Global period = 1 millisecond.
Coop tardiness is 5x better with 4x fewer context switches.

Tardiness is still 5ms due to context switch plateau.
9348 Context Switches/Second vs 2211 Context
Switches/Second.

Krasic, Saubhasik, Sinha, Goel Fair and Timely Scheduling via Cooperative Polling

Introduction
Our Approach

Results
Summary

Timeliness
Fairness

Outline

1 Introduction
Problem Description
Previous Approaches

2 Our Approach
Design
Implementation

3 Results
Timeliness
Fairness

Krasic, Saubhasik, Sinha, Goel Fair and Timely Scheduling via Cooperative Polling

Introduction
Our Approach

Results
Summary

Timeliness
Fairness

Fairness for Adaptive Applications

8 Video players + 4 Background loads.
Coop fairshare scheduler shown, results with Linux CFS
(not shown) are similar.
Coop achieves timeliness and fairness.

Krasic, Saubhasik, Sinha, Goel Fair and Timely Scheduling via Cooperative Polling

Introduction
Our Approach

Results
Summary

Timeliness
Fairness

CPU fairness != Quality Fairness

FPS per video (left graph) is chaotic.
Video Bitrates (right graph) are indicative of videos’ busty
requirements.

Krasic, Saubhasik, Sinha, Goel Fair and Timely Scheduling via Cooperative Polling

Introduction
Our Approach

Results
Summary

Timeliness
Fairness

Application-centric fairness

Equal user defined quality (fps) via user scheduling
All players run in same Coop group

CPU within group allocated according to user specified
virtual time.

Krasic, Saubhasik, Sinha, Goel Fair and Timely Scheduling via Cooperative Polling

Introduction
Our Approach

Results
Summary

Summary

Cooperative Polling is:
Split level user-kernel scheduling
Kernel combines fair sharing base with timeliness through
cooperative-polling
Kernel facilitates cooperation and protects against
misbehaviour.
Supports resource and application centric fairness

Results indicate sub-millisecond timing requirements are
attainable.
Reconciles the conflict between best-effort and
time-sensitive applications.

Krasic, Saubhasik, Sinha, Goel Fair and Timely Scheduling via Cooperative Polling

Introduction
Our Approach

Results
Summary

Future Work

Multiprocessor evaluation
Integrate with thread library such as GNU Pth
Other resource types—storage, network, memory.
Implementing the concept in a hypervisor.
Move of fast-path coop_poll to Linux vsyscall.
Support for Linux scheduler groups/cgroups.

Krasic, Saubhasik, Sinha, Goel Fair and Timely Scheduling via Cooperative Polling

Introduction
Our Approach

Results
Summary

Questions?

All of our code is open source: http://qstream.org/
Please visit our poster/demo at the poster session.

Krasic, Saubhasik, Sinha, Goel Fair and Timely Scheduling via Cooperative Polling

http://qstream.org/

	Introduction
	Problem Description
	Previous Approaches

	Our Approach
	Design
	Implementation

	Results
	Timeliness
	Fairness

	Summary

