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Emulab

• Public testbed for network experimentation
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• Complex networking experiments within minutes



Emulab — precise research tool

• Realism: 
– Real dedicated hardware

• Machines and networks

– Real operating systems

– Freedom to configure any component of the software 
stack

– Meaningful real-world results

• Control:
– Closed system

• Controlled external dependencies and side effects

– Control interface

– Repeatable, directed experimentation
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Goal: more control over execution

• Stateful swap-out
– Demand for physical resources exceeds capacity

– Preemptive experiment scheduling
• Long-running 
• Large-scale experiments

– No loss of experiment state

• Time-travel
– Replay experiments

• Deterministically or non-deterministically

– Debugging and analysis aid
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Challenge

• Both controls should preserve fidelity of 
experimentation

• Both rely on transparency of distributed checkpoint
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Transparent checkpoint

• Traditionally, semantic transparency:
– Checkpointed execution is one of the possible correct 

executions

• What if we want to preserve performance 
correctness? 
– Checkpointed execution is one of the correct executions 
closest to a non-checkpointed run

• Preserve measurable parameters of the system
– CPU allocation
– Elapsed time
– Disk throughput
– Network delay and bandwidth
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Traditional view

• Local case
– Transparency = smallest possible downtime

– Several milliseconds [Remus]

– Background work

– Harms realism

• Distributed case
– Lamport checkpoint

• Provides consistency

– Packet delays, timeouts, traffic bursts, replay buffer 
overflows
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Main insight

• Conceal checkpoint from the system under test
– But still stay on the real hardware as much as possible

• “Instantly” freeze the system
– Time and execution

– Ensure atomicity of checkpoint
• Single non-divisible action 

• Conceal checkpoint by time virtualization
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Contributions

• Transparency of  distributed checkpoint
• Local atomicity 

– Temporal firewall 

• Execution control mechanisms for Emulab
– Stateful swap-out

– Time-travel

• Branching storage
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Challenges and implementation
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Checkpoint essentials

• State encapsulation 
– Suspend execution

– Save running state of the 
system

• Virtualization layer
– Suspends the system

– Saves its state

– Saves in-flight state

– Disconnects/reconnects to 
the hardware
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First challenge: atomicity

• Permanent encapsulation is 
harmful
– Too slow

– Some state is shared

• Encapsulated upon 
checkpoint

15
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First challenge: atomicity

• Permanent encapsulation is 
harmful
– Too slow

– Some state is shared

• Encapsulated upon 
checkpoint

• Externally to VM
– Full memory virtualization

– Needs declarative description 
of  shared state

16



First challenge: atomicity

• Permanent encapsulation is 
harmful
– Too slow

– Some state is shared

• Encapsulated upon 
checkpoint

• Externally to VM
– Full memory virtualization

– Needs declarative description 
of  shared state

• Internally to VM
– Breaks atomicity
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Atomicity in the local case

• Temporal firewall
– Selectively suspends 

execution and time

– Provides atomicity inside 
the firewall

• Execution control in the 
Linux kernel
– Kernel threads

– Interrupts, exceptions, 
IRQs

• Conceals checkpoint 
– Time virtualization
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Second challenge: synchronization

• Lamport checkpoint
– No synchronization

– System is partially 
suspended

• Preserves consistency 
– Logs in-flight packets

• Once logged it’s 
impossible to remove
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Second challenge: synchronization

???, $%#!
Timeout

• Lamport checkpoint
– No synchronization

– System is partially 
suspended

• Preserves consistency 
– Logs in-flight packets

• Once logged it’s 
impossible to remove

• Unsuspended nodes
– Time-outs

20



Synchronized checkpoint

• Synchronize clocks 
across the system

• Schedule 
checkpoint 

• Checkpoint all 
nodes at once

• Almost no in-flight 
packets
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Bandwidth-delay product

• Large number of in-
flight packets 
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Bandwidth-delay product

• Large number of in-
flight packets 

• Slow links dominate 
the log

• Faster links wait for 
the entire log to 
complete
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Bandwidth-delay product

• Large number of in-
flight packets 

• Slow links dominate 
the log

• Faster links wait for 
the entire log to 
complete

• Per-path replay?
– Unavailable at Layer 2
– Accurate replay 

engine on every node
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Checkpoint the network core

• Leverage Emulab delay 
nodes
– Emulab links are no-delay

– Link emulation done by   
delay nodes

• Avoid replay of in-flight 
packets

• Capture all in-flight packets 
in core
– Checkpoint delay nodes
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Efficient branching storage

• To be practical stateful
swap-out has to be fast

• Mostly read-only FS
– Shared across nodes and 

experiments

• Deltas accumulate 
across swap-outs

• Based on LVM
– Many optimizations
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Evaluation



Evaluation plan

• Transparency of the checkpoint
• Measurable metrics

– Time virtualization

– CPU allocation

– Network parameters
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Time virtualization
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do {
usleep(10 ms)
gettimeofday()

} while ()

sleep + overhead = 20 ms



Time virtualization
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Checkpoint every 5 sec
(24 checkpoints)



Time virtualization

31



Time virtualization
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Timer accuracy is 28 μsec

Checkpoint adds ±80 μsec 
error



CPU allocation
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do {
stress_cpu()
gettimeofday()

} while()

stress + overhead = 236.6 ms



CPU allocation
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Checkpoint every 5 sec
(29 checkpoints)



CPU allocation
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CPU allocation
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Normally within 9 ms 
of  average

Checkpoint adds 27 ms error



CPU allocation
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ls /root    – 7ms overhead
xm list     – 130 ms



Network transparency: iperf
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- 1Gbps, 0 delay network, 
- iperf between two VMs
- tcpdump inside one of VMs
- averaging over 0.5 ms



Network transparency: iperf
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Checkpoint every 5 sec
(4 checkpoints)



Network transparency: iperf
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Average inter-packet time: 18 μsec
Checkpoint adds: 330 -- 5801  μsec



Network transparency: iperf
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No TCP window change
No packet drops

Throughput drop is 
due to background 
activity



Network transparency: BitTorrent
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100Mbps, low delay 
1BT server + 3 clients 
3GB file



Network transparency: BitTorrent
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Checkpoint preserves 
average throughput

Checkpoint every 5 sec
(20 checkpoints)



Conclusions

• Transparent distributed checkpoint
– Precise research tool

– Fidelity of distributed system analysis

• Temporal firewall
– General mechanism to change perception of time for the 

system

– Conceal various external events

• Future work is time-travel
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