
Transparent Checkpoint of Closed
Distributed Systems in

Emulab

Anton Burtsev, PrashanthRadhakrishnan,
Mike Hibler, and Jay Lepreau

University of Utah, School of Computing

Emulab

ÅPublic testbedfor network experimentation

2

Emulab

ÅPublic testbedfor network experimentation

3

Emulab

ÅPublic testbedfor network experimentation

4

Emulab

ÅPublic testbedfor network experimentation

5

ÅComplex networking experiments within minutes

Emulabτprecise research tool

ÅRealism:
ïReal dedicated hardware
ÅMachines and networks

ïReal operating systems

ïFreedom to configure any component of the software
stack

ïMeaningful real-world results

ÅControl:
ïClosed system
ÅControlled external dependencies and side effects

ïControl interface

ïRepeatable, directed experimentation

6

Goal: more control over execution

ÅStatefulswap-out
ïDemand for physical resources exceeds capacity

ïPreemptive experiment scheduling
ÅLong-running
ÅLarge-scale experiments

ïNo loss of experiment state

ÅTime-travel
ïReplay experiments
ÅDeterministically or non-deterministically

ïDebugging and analysis aid

7

Challenge

ÅBoth controls should preserve fidelity of
experimentation
ÅBoth rely on transparencyof distributed checkpoint

8

Transparent checkpoint

ÅTraditionally, semantic transparency:
ïCheckpointedexecution is one of the possible correct

executions

ÅWhat if we want to preserve performance
correctness?
ïCheckpointedexecution is one of the correct executions

closestto a non-checkpointedrun

ÅPreserve measurable parameters of the system
ïCPU allocation
ïElapsed time
ïDisk throughput
ïNetwork delay and bandwidth

9

Traditional view

ÅLocal case
ïTransparency = smallest possible downtime

ïSeveral milliseconds [Remus]

ïBackground work

ïHarms realism

ÅDistributed case
ïLamportcheckpoint
ÅProvides consistency

ïPacket delays, timeouts, traffic bursts, replay buffer
overflows

10

Main insight

ÅConceal checkpoint from the system under test
ïBut still stay on the real hardware as much as possible

ÅάLƴǎǘŀƴǘƭȅέ ŦǊŜŜȊŜ ǘƘŜ ǎȅǎǘŜƳ
ïTime and execution

ïEnsure atomicity of checkpoint
ÅSingle non-divisible action

ÅConceal checkpoint by time virtualization

11

Contributions

ÅTransparency of distributed checkpoint
ÅLocal atomicity
ïTemporal firewall

ÅExecution control mechanisms for Emulab
ïStatefulswap-out

ïTime-travel

ÅBranching storage

12

Challenges and implementation

13

Checkpoint essentials

ÅState encapsulation
ïSuspend execution

ïSave running state of the
system

ÅVirtualization layer
ïSuspends the system

ïSaves its state

ïSaves in-flight state

ïDisconnects/reconnects to
the hardware

14

First challenge: atomicity

ÅPermanent encapsulation is
harmful
ïToo slow

ïSome state is shared

ÅEncapsulated upon
checkpoint

15

?

First challenge: atomicity

ÅPermanent encapsulation is
harmful
ïToo slow

ïSome state is shared

ÅEncapsulated upon
checkpoint

ÅExternally to VM
ïFull memory virtualization

ïNeedsdeclarative description
of shared state

16

First challenge: atomicity

ÅPermanent encapsulation is
harmful
ïToo slow

ïSome state is shared

ÅEncapsulated upon
checkpoint

ÅExternally to VM
ïFull memory virtualization

ïNeedsdeclarative description
of shared state

Å Internally to VM
ïBreaks atomicity

17

Atomicity in the local case

ÅTemporal firewall
ïSelectively suspends

execution and time

ïProvides atomicity inside
the firewall

ÅExecution control in the
Linux kernel
ïKernel threads

ïInterrupts, exceptions,
IRQs

ÅConceals checkpoint
ïTime virtualization

18

Second challenge: synchronization

ÅLamportcheckpoint
ïNo synchronization

ïSystem is partially
suspended

ÅPreserves consistency
ïLogs in-flight packets

ÅhƴŎŜ ƭƻƎƎŜŘ ƛǘΩǎ
impossible to remove

19

Second challenge: synchronization

???, $%#!
Timeout

ÅLamportcheckpoint
ïNo synchronization

ïSystem is partially
suspended

ÅPreserves consistency
ïLogs in-flight packets

ÅhƴŎŜ ƭƻƎƎŜŘ ƛǘΩǎ
impossible to remove

ÅUnsuspended nodes
ïTime-outs

20

Synchronized checkpoint

ÅSynchronize clocks
across the system

ÅSchedule
checkpoint

ÅCheckpoint all
nodes at once

ÅAlmost no in-flight
packets

21

Bandwidth-delay product

ÅLarge number of in-
flight packets

22

Bandwidth-delay product

ÅLarge number of in-
flight packets

ÅSlow links dominate
the log

ÅFaster links wait for
the entire log to
complete

23

Bandwidth-delay product

ÅLarge number of in-
flight packets

ÅSlow links dominate
the log

ÅFaster links wait for
the entire log to
complete

ÅPer-path replay?
ïUnavailable at Layer 2
ïAccurate replay

engine on every node

24

Checkpoint the network core

ÅLeverage Emulabdelay
nodes
ïEmulablinks are no-delay

ïLink emulation done by
delay nodes

ÅAvoid replay of in-flight
packets

ÅCapture all in-flight packets
in core
ïCheckpoint delay nodes

25

Efficient branching storage

ÅTo be practical stateful
swap-out has to be fast
ÅMostly read-only FS
ïShared across nodes and

experiments

ÅDeltas accumulate
across swap-outs

ÅBased on LVM
ïMany optimizations

26

Evaluation

Evaluation plan

ÅTransparency of the checkpoint
ÅMeasurable metrics
ïTime virtualization

ïCPU allocation

ïNetwork parameters

28

Time virtualization

29

do {
usleep(10 ms)
gettimeofday()

} while ()

sleep + overhead = 20 ms

Time virtualization

30

Checkpoint every 5 sec
(24 checkpoints)

Time virtualization

31

