
Transparent Checkpoint of Closed
Distributed Systems in

Emulab

Anton Burtsev, Prashanth Radhakrishnan,
Mike Hibler, and Jay Lepreau

University of Utah, School of Computing

Emulab

• Public testbed for network experimentation

2

Emulab

• Public testbed for network experimentation

3

Emulab

• Public testbed for network experimentation

4

Emulab

• Public testbed for network experimentation

5

• Complex networking experiments within minutes

Emulab — precise research tool

• Realism:
– Real dedicated hardware

• Machines and networks

– Real operating systems

– Freedom to configure any component of the software
stack

– Meaningful real-world results

• Control:
– Closed system

• Controlled external dependencies and side effects

– Control interface

– Repeatable, directed experimentation

6

Goal: more control over execution

• Stateful swap-out
– Demand for physical resources exceeds capacity

– Preemptive experiment scheduling
• Long-running
• Large-scale experiments

– No loss of experiment state

• Time-travel
– Replay experiments

• Deterministically or non-deterministically

– Debugging and analysis aid

7

Challenge

• Both controls should preserve fidelity of
experimentation

• Both rely on transparency of distributed checkpoint

8

Transparent checkpoint

• Traditionally, semantic transparency:
– Checkpointed execution is one of the possible correct

executions

• What if we want to preserve performance
correctness?
– Checkpointed execution is one of the correct executions
closest to a non-checkpointed run

• Preserve measurable parameters of the system
– CPU allocation
– Elapsed time
– Disk throughput
– Network delay and bandwidth

9

Traditional view

• Local case
– Transparency = smallest possible downtime

– Several milliseconds [Remus]

– Background work

– Harms realism

• Distributed case
– Lamport checkpoint

• Provides consistency

– Packet delays, timeouts, traffic bursts, replay buffer
overflows

10

Main insight

• Conceal checkpoint from the system under test
– But still stay on the real hardware as much as possible

• “Instantly” freeze the system
– Time and execution

– Ensure atomicity of checkpoint
• Single non-divisible action

• Conceal checkpoint by time virtualization

11

Contributions

• Transparency of distributed checkpoint
• Local atomicity

– Temporal firewall

• Execution control mechanisms for Emulab
– Stateful swap-out

– Time-travel

• Branching storage

12

Challenges and implementation

13

Checkpoint essentials

• State encapsulation
– Suspend execution

– Save running state of the
system

• Virtualization layer
– Suspends the system

– Saves its state

– Saves in-flight state

– Disconnects/reconnects to
the hardware

14

First challenge: atomicity

• Permanent encapsulation is
harmful
– Too slow

– Some state is shared

• Encapsulated upon
checkpoint

15

?

First challenge: atomicity

• Permanent encapsulation is
harmful
– Too slow

– Some state is shared

• Encapsulated upon
checkpoint

• Externally to VM
– Full memory virtualization

– Needs declarative description
of shared state

16

First challenge: atomicity

• Permanent encapsulation is
harmful
– Too slow

– Some state is shared

• Encapsulated upon
checkpoint

• Externally to VM
– Full memory virtualization

– Needs declarative description
of shared state

• Internally to VM
– Breaks atomicity

17

Atomicity in the local case

• Temporal firewall
– Selectively suspends

execution and time

– Provides atomicity inside
the firewall

• Execution control in the
Linux kernel
– Kernel threads

– Interrupts, exceptions,
IRQs

• Conceals checkpoint
– Time virtualization

18

Second challenge: synchronization

• Lamport checkpoint
– No synchronization

– System is partially
suspended

• Preserves consistency
– Logs in-flight packets

• Once logged it’s
impossible to remove

19

Second challenge: synchronization

???, $%#!
Timeout

• Lamport checkpoint
– No synchronization

– System is partially
suspended

• Preserves consistency
– Logs in-flight packets

• Once logged it’s
impossible to remove

• Unsuspended nodes
– Time-outs

20

Synchronized checkpoint

• Synchronize clocks
across the system

• Schedule
checkpoint

• Checkpoint all
nodes at once

• Almost no in-flight
packets

21

Bandwidth-delay product

• Large number of in-
flight packets

22

Bandwidth-delay product

• Large number of in-
flight packets

• Slow links dominate
the log

• Faster links wait for
the entire log to
complete

23

Bandwidth-delay product

• Large number of in-
flight packets

• Slow links dominate
the log

• Faster links wait for
the entire log to
complete

• Per-path replay?
– Unavailable at Layer 2
– Accurate replay

engine on every node

24

Checkpoint the network core

• Leverage Emulab delay
nodes
– Emulab links are no-delay

– Link emulation done by
delay nodes

• Avoid replay of in-flight
packets

• Capture all in-flight packets
in core
– Checkpoint delay nodes

25

Efficient branching storage

• To be practical stateful
swap-out has to be fast

• Mostly read-only FS
– Shared across nodes and

experiments

• Deltas accumulate
across swap-outs

• Based on LVM
– Many optimizations

26

Evaluation

Evaluation plan

• Transparency of the checkpoint
• Measurable metrics

– Time virtualization

– CPU allocation

– Network parameters

28

Time virtualization

29

do {
usleep(10 ms)
gettimeofday()

} while ()

sleep + overhead = 20 ms

Time virtualization

30

Checkpoint every 5 sec
(24 checkpoints)

Time virtualization

31

Time virtualization

32

Timer accuracy is 28 μsec

Checkpoint adds ±80 μsec
error

CPU allocation

33

do {
stress_cpu()
gettimeofday()

} while()

stress + overhead = 236.6 ms

CPU allocation

34

Checkpoint every 5 sec
(29 checkpoints)

CPU allocation

35

CPU allocation

36

Normally within 9 ms
of average

Checkpoint adds 27 ms error

CPU allocation

37

ls /root – 7ms overhead
xm list – 130 ms

Network transparency: iperf

38

- 1Gbps, 0 delay network,
- iperf between two VMs
- tcpdump inside one of VMs
- averaging over 0.5 ms

Network transparency: iperf

39

Checkpoint every 5 sec
(4 checkpoints)

Network transparency: iperf

40

Average inter-packet time: 18 μsec
Checkpoint adds: 330 -- 5801 μsec

Network transparency: iperf

41

No TCP window change
No packet drops

Throughput drop is
due to background
activity

Network transparency: BitTorrent

42

100Mbps, low delay
1BT server + 3 clients
3GB file

Network transparency: BitTorrent

43

Checkpoint preserves
average throughput

Checkpoint every 5 sec
(20 checkpoints)

Conclusions

• Transparent distributed checkpoint
– Precise research tool

– Fidelity of distributed system analysis

• Temporal firewall
– General mechanism to change perception of time for the

system

– Conceal various external events

• Future work is time-travel

44

Thank you

aburtsev@flux.utah.edu

