
Qi Gao, Wenbin Zhang, Yan Tang, and Feng Qin

The Ohio State University

1

Memory Management Bugs are Severe
 Memory management bugs:
 Programming errors related to memory

management
 E.g., buffer overflows, dangling pointers, etc.

 Causing severe problems during
production runs
 System hangs or crashes
 System compromises [US-CERT]

 Long delays for diagnosing and fixing the bugs
[Symantec 2006, Arbaugh 2000]

2

Desired Features for Handling
Memory Bugs at Production Runs?

 Quick recovery
 Improving availability

 Immune from future errors
 Covering the time window before official bug fixes

 Safe
 Not introduce new bugs

 Useful diagnosis reports
 Assisting offline bug diagnosis

 Low overhead
 For production runs

3

Existing Solutions

4

Category Examples Limitations

Oblivion-
based

Failure-oblivious computing,
reactive immune systems

Unsafe

Redundancy-
based

N-version programming,
recovery blocks, DieHard,
Exterminator

Expensive

Avoidance-
based

Rx, Archipelago Expensive or
Non-immune

Our Contributions
 First-Aid: A low-overhead method for

surviving and preventing memory bugs
 Environmental change based failure diagnosis
 Runtime patches for surviving failures and preventing

future errors

 Evaluation with seven real-world applications
 Fast diagnosis and failure recovery (0.887 sec on average)
 Effective in preventing bug reoccurrence
 Low runtime overhead (3.7% on average)
 Informative bug reports

5

Outline
 Motivation & Introduction
 First-Aid Overview
 Design and Algorithms
 Software architecture
 Diagnosis algorithm
 Validation algorithm

 Evaluation
 Conclusion

6

Environmental Changes for
Failure Diagnosis

 Two types of environmental changes for
diagnosis:
 Preventive changes
 Exposing changes

 Execution environments:
 Everything but the program itself
 E.g., runtime systems, operating systems, etc.

7

B

An Example of Preventive and
Exposing Changes

B

B

Preventive change:
add padding

Exposing change:
Pad with canary*

*Canary: a bit pattern that
unlikely appears in normal
execution, e.g. 0xdeadbeef

Enlarge buffer size: (padding is random data)
 can prevent failure but not proving occurrence

(possibly cure other types due to disturbance)
1. Detect Overflow!!!
2. Identify bug-affected

objects

8

Environmental Changes
for Different Types of Memory Bugs

Bug types Preventive changes Exposing changes
(Bug manifestations)

Application
points

Buffer
overflow Padding new objects Padding objects with

canary (corruption) allocation

Dangling
pointer read Delay free Fill objects with canary

(failure) deallocation

Dangling
pointer write Delay free Fill objects with canary

(corruption) deallocation

Double free Delay free Check parameters
(free twice) deallocation

Uninitialized
read

Fill new objects with
zeros

Fill new objects with
canary (failure) allocation

9

Runtime Patches
Bug types Preventive changes/

Runtime patches
Exposing changes

(Bug manifestations)
Application

points

Buffer
overflow Padding new objects Padding objects with

canary (corruption) allocation

Dangling
pointer read Delay free Fill objects with canary

(failure) deallocation

Dangling
pointer write Delay free Fill objects with canary

(corruption) deallocation

Double free Delay free Check parameters
(free twice) deallocation

Uninitialized
read

Fill new objects with
zeros

Fill new objects with
canary (failure) allocation

10

First-Aid Working Scenario

11

Checkpoint

bug diagnosis

one diagnosis step
rollback to
checkpoint

re-execute
with change

analyze
result

patch validation

re-execute multiple times
with randomization

patch
generation

patch
list

allocation/
deallocation

trace

illegal
access
trace

patch
details

diagnosis
log

bug report

Failure or Error
DetectedProgram

execution

Outline
 Motivation & introduction
 First-Aid overview
 Design and algorithms
 Software architecture
 Diagnosis algorithm
 Validation algorithm

 Evaluation
 Summary

12

First-Aid Architecture

13

Application

First-Aid

Memory Allocator
Extension

Error
Monitor(s)

Lightweight
Checkpoint/

Rollback

Diagnosis
Engine

Validation
Engine

Patch
Management

Diagnosis Engine
 Phase I:
 Is the failure due to memory bug(s)?
 Which checkpoint to rollback to for diagnosis and

patching?

 Phase II:
 Which type(s) of memory bug(s) has occurred?
 What memory objects are potentially affected by

the bug?

14

Diagnosis Phase I

15

Rollback

Phase I: Is the failure due to memory bug(s)? Which checkpoint
to rollback to?

Re-execute:
All preventive changes
on All objects
from this checkpoint

We know:
1. A memory bug
2. Triggered after this checkpoint

Pass

Call-site:
[0x806437b]
[0x80651a8]
[0x8074d94]

Diagnosis Phase II

16

Phase II: Which bug type? Where to patch?

Re-execute:
exposing one type, and
preventing other types
on all memory objects

undecided set identified set

double free

Manifested

Not manifested

buffer overflow

Locate the call-sites by:
1. check corruption, or
2. binary search

We know:
1. Buffer overflow bug
2. Exact call-sites

Enough for patch
generation

Validation Engine

17

Instrumentation

allocation/
deallocation

trace
Iteration 1:

illegal
access
trace

E.g. read before
initialization; write
over boundary;
etc.

allocation/
deallocation

trace
Iteration 2:

illegal
access
trace

Randomized
allocation

allocation/
deallocation

trace
Iteration 3:

illegal
access
trace

Cross check:
1. patch triggering
2. illegal accesses
3. offset of each illegal
access

Validation: Does the patch have consistent effects?

In parallel with
recovered program

Outline
 Motivation & introduction
 First-Aid overview
 Design and algorithms
 Software architecture
 Diagnosis algorithm
 Validation algorithm

 Evaluation
 Summary

18

Experimental Setup
 Implementation:
 Linux 2.4.22 with flashback checkpointing support
 Extension based on Lea allocator (used in GNU libc)

 Platform:
 Intel Xeon 3.00 GHz, 2MB L2 cache, 2GB memory
 100 Mbps Ethernet connection

 Applications:
 Effectiveness: 7 applications (Apache, Squid, CVS,

Pine, Mutt, M4, and BC), 7 real bugs, 2 injected
bugs

 Overhead: the above 7 applications, SPEC INT2000,
allocation intensive benchmarks 19

Overall Effectiveness
Application Diagnosed bugs Runtime patch

(call-sites applied)
Error

prevention
Recovery
time (s)

Apache dangling pointer
read delay free (7) Yes 3.978

Squid buffer overflow add padding (1) Yes 0.386

CVS double free delay free (1) Yes 0.121

Pine buffer overflow add padding (1) Yes 0.722

Mutt buffer overflow add padding (1) Yes 0.617

M4 dangling pointer
read delay free (2) Yes 1.396

BC buffer overflow add padding (3) Yes 0.573

Apache-uir* uninitialized read fill with zero (1) Yes 0.102

Apache-dpw* dangling pointer
write delay free (1) Yes 0.084

20

Comparison with Rx and Restart
 Trigger the buffer overflow bug in Squid

periodically after 7 second

21

0
2
4
6
8

10
12

0 5 10 15 20 25T
h
ro

u
g
h
p
u
t

(M
B
/s

)

Elapsed Time (s)

Restart Rx First-Aid

Scope of Patch
 Call-sites and memory objects affected by

runtime patches in buggy regions

Name
Call-sites Objects

First-Aid Rx Ratio First-Aid Rx Ratio

Apache 7 32 21.88% 315 2567 12.23%

Squid 1 61 1.64% 1 3626 0.03%

CVS 1 44 2.27% 17 306 5.56%

Pine 1 380 0.26% 11 2881 0.38%

Mutt 1 216 0.46% 2 5004 0.04%

M4 2 8 25.00% 3 183 1.64%

BC 3 34 8.82% 5 732 0.68%

22

Runtime Overhead

23

1.02 1.04 1.04 1.05 1.03
1.06

1.02 1.02 1.02 1.02 1.00 1.00 1.02 1.02 1.02 1.03 1.03
1.09 1.12 1.09

1.01
1.061.04

0

0.2

0.4

0.6

0.8

1

1.2

A
p
ac

h
e

S
q
u
id

C
V
S

M
u
tt

Pi
n
e

B
C

M
4

1
6
4
.g

zi
p

1
7
5
.v

p
r

1
7
6
.g

cc

1
8
1
.m

cf

1
8
6
.c

ra
ft

y

1
9
7
.p

ar
se

r

2
5
2
.e

o
n

2
5
3
.p

er
lb

m
k

2
5
5
.v

o
rt

ex

2
5
6
.b

zi
p
2

3
0
0
.t

w
o
lf

cf
ra

c

es
p
re

ss
o

lin
d
sa

y

p
2
c

A
ve

ra
g
e

Original Allocator Overall

Applications SPEC INT2000 Allocation
Intensive

Conclusions and Limitations
 Avoidance-based methods with accurate

diagnosis can efficiently and effectively
survive and prevent memory management
bugs.

 Limitations:
 Cannot handle all types of memory bugs (e.g.

memory leaks, incorrect pointer arithmetics)
 Cannot handle memory bugs that manifest

themselves silently
 Need more powerful error checkers

24

Future Work and Acknowledgements
 Future Work
 Evaluate First-Aid with more types of memory bugs

in more applications
 Extend First-Aid to support multi-tier server

applications

 Acknowledgements
 Our shepherd: Julia Lawall
 Anonymous reviewers
 Wei Huang, Matthew Koop, Chris Stewart, Guoqing

Xu, and Yuanyuan Zhou

25

	First-Aid: Surviving and Preventing Memory Management Bugs during Production Runs
	Memory Management Bugs are Severe
	Desired Features for Handling Memory Bugs at Production Runs?
	Existing Solutions
	Our Contributions
	Outline
	Environmental Changes for�Failure Diagnosis
	An Example of Preventive and Exposing Changes
	Environmental Changes �for Different Types of Memory Bugs
	Runtime Patches
	First-Aid Working Scenario
	Outline
	First-Aid Architecture
	Diagnosis Engine
	Diagnosis Phase I
	Diagnosis Phase II
	Validation Engine
	Outline
	Experimental Setup
	Overall Effectiveness
	Comparison with Rx and Restart
	Scope of Patch
	Runtime Overhead
	Conclusions and Limitations
	Future Work and Acknowledgements

