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Why should you care?

●Eliminates the need to choose 
between security and 
convenience

●Patch promptly
and

●Avoid reboots
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Why is avoiding
reboots important?

●Downtime

Few minutes 1-2 hour announced window
during off-peak hours

●Lose software state
●Reboots commonly cause 
unexpected problems
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Why is patching
promptly important?

●> 90% of attacks exploit known 
vulnerabilities

●Days or weeks: too long to wait
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patch:
- if(aa) {bb}
+ if(cc) {dd}

Kernel

The Challenge

? 457f46
4c0102
000100
000002
00e300No existing

complete
solution



  

Contributions

●Object code layer approach
●pre-post differencing
● run-pre matching

● Implementation for Linux kernel

●Evaluation: 3 years of Linux
kernel security patches



  

Design Outline

● Identify which functions are
modified by the source code patch

●Generate a “replacement function”
for every to-be-replaced function

●Start redirecting execution to the
replacement functions
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foo'
55e8[bar]

Handling symbolic references

Symbol table not sufficient

457f46
4c0102
000100
000002
00e300
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Matching pre code 
to running kernel

●Byte-by-byte comparison
●When pre code refers to 
symbol, discover symbol value 
based on running kernel

●Discovered symbol values used 
to resolve symbols in 
replacement functions
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Any pre function X
from same scope:
...
[bar]
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Kernel's
running code:

[addr f0000000]
function X:
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00 11 11 00
...

bar = 00111100 + f0000002 - (-4)
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...
[bar]
...



  

Any pre function X
from same scope:
...
[bar]
...

Kernel's
running code:

[addr f0000000]
function X:
...
00 11 11 00
...

bar = 00111100 + f0000002 - (-4)
= f0111106

replacement foo':
...
[bar]
...



  

Kernel

foo'
55e8f0000001

Should not while foo is running

foo
jmp

When to switch to new version
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Safely redirect execution

●Need to ensure that switchover 
to new code version is atomic

●Temporarily grab all CPUs
●For every thread, check that the 
thread is not in the middle of 
executing any replaced function

● If necessary, abort (rare)
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Data structure changes

●Design described so far only 
changes code—not data

●Sometimes need to walk 
existing data structures, 
updating them:
●Add a field to a struct
●Change how a data structure 
is initialized



  

●Simply modify the patch or
add code to the patch

●Can use macros to run code
when the update is applied
●ksplice_pre_apply(func)
●ksplice_apply(func)
(and others...)

Ksplice support for data
structure changes



  

­­­ a/arch/i386/kernel/cpu/amd.c
+++ b/arch/i386/kernel/cpu/amd.c
@@ ­207,6 +207,9 @@ static void __init 
  init_amd(struct cpuinfo_x86 *c)
...
+ if (c­>x86 >= 6)
+ set_bit(X86_FEATURE_FXSAVE_LEAK, 
+     c­>x86_capability);
... 

CVE-2006-1056 patch

(and other changes)



  

+#include "ksplice­patch.h"
+static void set_fxsave_leak_bit(int id)
+{
+  int i;
+  for (i = 0; i < NR_CPUS; i++) {
+    struct cpuinfo_x86 *c = 
+        cpu_data + i;
+    if (c­>x86 >= 6 && c­>x86_vendor == 
+        X86_VENDOR_AMD)
+    set_bit(X86_FEATURE_FXSAVE_LEAK, 
+              c­>x86_capability);
+  }
+}
+ksplice_apply(set_fxsave_leak_bit);



  

Implementation
● Implemented for Linux kernel

●Requires no kernel modifications

●Makes minimal use of Linux 
interfaces

●Some progress towards 
becoming a Linux “official feature”



  

Hypothesis
●Most Linux security patches can 
be hot-applied without writing 
much new code 

● Interested in:
●How many patches can be 
applied without any new code?

●How much new code is needed 
to apply the other patches?



  

Methodology
●Matched all 'significant' CVEs 
against Linux patch commit logs



  

Methodology
●Matched all 'significant' CVEs 
against Linux patch commit logs

●Generated a hot update for each 
CVE patch, confirming that:
●Update applies cleanly
●Still passes POSIX stress test
●For available exploits:
the exploit stops working



  

Summary of Results

● Hot-apply most security patches
(88%) without any patch changes



  

Summary of Results

● Hot-apply most security patches
(88%) without any patch changes

● Hot-apply 100% with modest
programmer effort
(~17 lines of new code per patch)



  

2005-1263 2005-1264 2005-1589 2005-2456 2005-3276 
2005-2500 2005-2492 2005-3179 2005-3180 2005-2709 
2005-4639 2005-3784 2005-4605 2006-0095 2006-0457 
2006-2071 2006-1524 2006-1056 2006-1863 2006-1864
2006-0039 2006-1857 2006-1858 2006-1343 2006-2935 
2006-2451 2006-3626 2006-3745 2006-5751 2006-6304 
2006-5753 2006-6106 2007-0958 2007-1217 2007-0005 
2007-1000 2007-1730 2007-1734 2007-2480 2007-1353
2007-2875 2007-3105 2007-3851 2007-3848 2007-3740 
2007-4571 2007-4308 2007-5904 2007-6206 2007-6417 
2007-6063 2007-6434 2007-5966 2008-0001 2008-0007 
2008-0009 2008-0600 2008-1367 2008-1675 2008-1375
2008-2148 2008-1669 2008-1294 2008-1673

CVEs that do not require
any new code



  

CVE #             Logical Lines 
2008-0007      34
2007-4571      10
2007-3851      1
2006-5753      1
2006-2071      14
2006-1056      4
2005-3179      20
2005-2709      48

CVEs needing new code



  

Related Work
Legacy binary hot update systems:

OPUS [Altekar 2005]
LUCOS [Chen 2006]
DynAMOS [Makris 2007]

Other hot update systems:
Ginseng [Neamtiu 2006]
K42 [Baumann 2007; 2005]

Black hat techniques:
[Cesare 1998] [sd@sf.cz 2001]
[Hoglund 2005] [Kong 2007]



  

Future work

●Start providing rebootless 
updates to end-users

●Evaluate against all bug-fix 
updates (instead of just security 
updates)



  

Conclusions

●A sysadmin can currently use 
Ksplice to eliminate all reboots 
associated with security updates

●Hot updates benefit from being 
created at the object code layer
●Handles more patches than 
previous systems



  

Acknowledgments

Tim Abbott
Anders Kaseorg
Waseem Daher

MIT SIPB
MIT PDOS



  

For more information:
http://www.ksplice.com

Mailing list: http://lists.ksplice.com

Jeff Arnold
jbarnold@ksplice.com



  

Adding fields to structs
 struct foo {
   int a;
+  int b;
 };
struct foo x[3];

                                4 bytes

                                8 bytes

                                4 bytes
                                4 bytes

                                8 bytes

                                8 bytes

Old layout

New layout

?
a
b
a
b
a
b

a
a
a



  

Shadow hashing  
● “shadow” field(s) off to side
●Lookup shadows by hashing the 
address of the structure instance 
(O(1) time)

Old instance of struct foo at 
address 0xbeef

b_hashtable{0xbeef} [Makris 2007]
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