

Rebootless
kernel updates

Jeff Arnold and
M. Frans Kaashoek

Massachusetts Institute of Technology

{jbarnold, kaashoek}@mit.edu

What is Ksplice?

What is Ksplice?

Any running
kernel

with bug

What is Ksplice?

Running
kernel

without bug

Any running
kernel

with bug

Ksplice

Update a traditional kernel
without rebooting

What is Ksplice?
traditional

patch

Running
kernel

without bug

Any running
kernel

with bug

Ksplice

Update a traditional kernel
without rebooting

Why should you care?

Why should you care?

●Eliminates the need to choose
between security and
convenience

●Patch promptly
and

●Avoid reboots

Why is avoiding
reboots important?

Why is avoiding
reboots important?

●Downtime

Few minutes 1-2 hour announced window
during off-peak hours

Why is avoiding
reboots important?

●Downtime

Few minutes 1-2 hour announced window
during off-peak hours

●Lose software state

Why is avoiding
reboots important?

●Downtime

Few minutes 1-2 hour announced window
during off-peak hours

●Lose software state
●Reboots commonly cause
unexpected problems

Why is patching
promptly important?

●> 90% of attacks exploit known
vulnerabilities

Why is patching
promptly important?

●> 90% of attacks exploit known
vulnerabilities

●Days or weeks: too long to wait

patch:
- if(aa) {bb}
+ if(cc) {dd}

Kernel

The Challenge

? 457f46
4c0102
000100
000002
00e300

patch:
- if(aa) {bb}
+ if(cc) {dd}

Kernel

The Challenge

? 457f46
4c0102
000100
000002
00e300No existing

complete
solution

Contributions

●Object code layer approach
●pre-post differencing
● run-pre matching

● Implementation for Linux kernel

●Evaluation: 3 years of Linux
kernel security patches

Design Outline

● Identify which functions are
modified by the source code patch

●Generate a “replacement function”
for every to-be-replaced function

●Start redirecting execution to the
replacement functions

pre-post differencing

pre source post source

pre-post differencing

compiled
pre

pre source

compiled
post

post source

gcc gcc

pre-post differencing

compiled
pre

pre source

compiled
post

post source

gcc gcc
Find what

differs

pre-post differencing

compiled
pre

pre source

compiled
post

post source

gcc gcc
Find what

differs

replacement
functions

Kernel

foo'
55e8f0000001

foo

Redirect execution

Replacement
function

Kernel

foo'
55e8f0000001

foo
jmp

Redirect execution

Replacement
function

foo'
55e8[bar]

Handling symbolic references

Symbol table not sufficient

457f46
4c0102
000100
000002
00e300

Matching pre code
to running kernel

Matching pre code
to running kernel

●Byte-by-byte comparison

Matching pre code
to running kernel

●Byte-by-byte comparison
●When pre code refers to
symbol, discover symbol value
based on running kernel

Matching pre code
to running kernel

●Byte-by-byte comparison
●When pre code refers to
symbol, discover symbol value
based on running kernel

●Discovered symbol values used
to resolve symbols in
replacement functions

replacement foo':
...
[bar]
...

Any pre function X
from same scope:
...
[bar]
...

replacement foo':
...
[bar]
...

Any pre function X
from same scope:
...
[bar]
...

Kernel's
running code:

replacement foo':
...
[bar]
...

Any pre function X
from same scope:
...
[bar]
...

Kernel's
running code:

[addr f0000000]
function X:
...
00 11 11 00
...

replacement foo':
...
[bar]
...

Any pre function X
from same scope:
...
[bar]
...

Kernel's
running code:

[addr f0000000]
function X:
...
00 11 11 00
...

bar = 00111100 + f0000002 - (-4)

replacement foo':
...
[bar]
...

Any pre function X
from same scope:
...
[bar]
...

Kernel's
running code:

[addr f0000000]
function X:
...
00 11 11 00
...

bar = 00111100 + f0000002 - (-4)
= f0111106

replacement foo':
...
[bar]
...

Kernel

foo'
55e8f0000001

Should not while foo is running

foo
jmp

When to switch to new version

Safely redirect execution

●Need to ensure that switchover
to new code version is atomic

Safely redirect execution

●Need to ensure that switchover
to new code version is atomic

●Temporarily grab all CPUs

Safely redirect execution

●Need to ensure that switchover
to new code version is atomic

●Temporarily grab all CPUs
●For every thread, check that the
thread is not in the middle of
executing any replaced function

Safely redirect execution

●Need to ensure that switchover
to new code version is atomic

●Temporarily grab all CPUs
●For every thread, check that the
thread is not in the middle of
executing any replaced function

● If necessary, abort (rare)

Data structure changes

●Design described so far only
changes code—not data

Data structure changes

●Design described so far only
changes code—not data

●Sometimes need to walk
existing data structures,
updating them:
●Add a field to a struct
●Change how a data structure
is initialized

●Simply modify the patch or
add code to the patch

●Can use macros to run code
when the update is applied
●ksplice_pre_apply(func)
●ksplice_apply(func)
(and others...)

Ksplice support for data
structure changes

­­­ a/arch/i386/kernel/cpu/amd.c
+++ b/arch/i386/kernel/cpu/amd.c
@@ ­207,6 +207,9 @@ static void __init
 init_amd(struct cpuinfo_x86 *c)
...
+ if (c­>x86 >= 6)
+ set_bit(X86_FEATURE_FXSAVE_LEAK,
+ c­>x86_capability);
...

CVE-2006-1056 patch

(and other changes)

+#include "ksplice­patch.h"
+static void set_fxsave_leak_bit(int id)
+{
+ int i;
+ for (i = 0; i < NR_CPUS; i++) {
+ struct cpuinfo_x86 *c =
+ cpu_data + i;
+ if (c­>x86 >= 6 && c­>x86_vendor ==
+ X86_VENDOR_AMD)
+ set_bit(X86_FEATURE_FXSAVE_LEAK,
+ c­>x86_capability);
+ }
+}
+ksplice_apply(set_fxsave_leak_bit);

Implementation
● Implemented for Linux kernel

●Requires no kernel modifications

●Makes minimal use of Linux
interfaces

●Some progress towards
becoming a Linux “official feature”

Hypothesis
●Most Linux security patches can
be hot-applied without writing
much new code

● Interested in:
●How many patches can be
applied without any new code?

●How much new code is needed
to apply the other patches?

Methodology
●Matched all 'significant' CVEs
against Linux patch commit logs

Methodology
●Matched all 'significant' CVEs
against Linux patch commit logs

●Generated a hot update for each
CVE patch, confirming that:
●Update applies cleanly
●Still passes POSIX stress test
●For available exploits:
the exploit stops working

Summary of Results

● Hot-apply most security patches
(88%) without any patch changes

Summary of Results

● Hot-apply most security patches
(88%) without any patch changes

● Hot-apply 100% with modest
programmer effort
(~17 lines of new code per patch)

2005-1263 2005-1264 2005-1589 2005-2456 2005-3276
2005-2500 2005-2492 2005-3179 2005-3180 2005-2709
2005-4639 2005-3784 2005-4605 2006-0095 2006-0457
2006-2071 2006-1524 2006-1056 2006-1863 2006-1864
2006-0039 2006-1857 2006-1858 2006-1343 2006-2935
2006-2451 2006-3626 2006-3745 2006-5751 2006-6304
2006-5753 2006-6106 2007-0958 2007-1217 2007-0005
2007-1000 2007-1730 2007-1734 2007-2480 2007-1353
2007-2875 2007-3105 2007-3851 2007-3848 2007-3740
2007-4571 2007-4308 2007-5904 2007-6206 2007-6417
2007-6063 2007-6434 2007-5966 2008-0001 2008-0007
2008-0009 2008-0600 2008-1367 2008-1675 2008-1375
2008-2148 2008-1669 2008-1294 2008-1673

CVEs that do not require
any new code

CVE # Logical Lines
2008-0007 34
2007-4571 10
2007-3851 1
2006-5753 1
2006-2071 14
2006-1056 4
2005-3179 20
2005-2709 48

CVEs needing new code

Related Work
Legacy binary hot update systems:

OPUS [Altekar 2005]
LUCOS [Chen 2006]
DynAMOS [Makris 2007]

Other hot update systems:
Ginseng [Neamtiu 2006]
K42 [Baumann 2007; 2005]

Black hat techniques:
[Cesare 1998] [sd@sf.cz 2001]
[Hoglund 2005] [Kong 2007]

Future work

●Start providing rebootless
updates to end-users

●Evaluate against all bug-fix
updates (instead of just security
updates)

Conclusions

●A sysadmin can currently use
Ksplice to eliminate all reboots
associated with security updates

●Hot updates benefit from being
created at the object code layer
●Handles more patches than
previous systems

Acknowledgments

Tim Abbott
Anders Kaseorg
Waseem Daher

MIT SIPB
MIT PDOS

For more information:
http://www.ksplice.com

Mailing list: http://lists.ksplice.com

Jeff Arnold
jbarnold@ksplice.com

Adding fields to structs
 struct foo {
 int a;
+ int b;
 };
struct foo x[3];

 4 bytes

 8 bytes

 4 bytes
 4 bytes

 8 bytes

 8 bytes

Old layout

New layout

?
a
b
a
b
a
b

a
a
a

Shadow hashing
● “shadow” field(s) off to side
●Lookup shadows by hashing the
address of the structure instance
(O(1) time)

Old instance of struct foo at
address 0xbeef

b_hashtable{0xbeef} [Makris 2007]

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

