
A Runtime System for Software
Lock Elision

Amitabha Roy (U. Cambridge)
Steven Hand (U. Cambridge)
Tim Harris (MSR Cambridge)

Motivation

Multicores mean application scalability is key to
good performance
Scaling programs synchronising with locks

Existing software systems use locks
Locks are very popular with programmers

Start with data race free correctly synchronised
lock based program
Use transactional memory opportunistically while
retaining the locks

Critical Sections & Speculation

Thread 1:
Lock(L)
Do stuff …
Unlock(L)

Thread 2:
Lock(L)
Do stuff …
Unlock(L)

Serialize

Critical Sections & Speculation

Thread 1:
Lock(L)
Do stuff …
Unlock(L)

Thread 2:
Lock(L)
Do stuff …
Unlock(L)

Rajwar et al: Speculative Lock Elision … Micro 2001

Relies on Hardware Transactional Memory (TM) support to enable
optimistic concurrency control
Exploits disjoint-access parallelism (red-black trees, hash tables, etc)

Critical Sections & Speculation

Thread 1:
Lock(L)
Do stuff …
Unlock(L)

Thread 2:
Lock(L)
Do stuff …
Unlock(L)

Serialize

Thread 1:
Lock(L)
Do stuff …
Unlock(L)

Thread 2:
Lock(L)
Do stuff …
Unlock(L)

Can coexist (excessive conflicts, I/O, wait conditions, ...)
No need for new semantics – start from lock-based programs
This paper: Software Lock Elision (SLE); no special h/w required

Coming Up ...

Speculation in software
Retaining lock semantics & behaviour
Implementation and evaluation
Interfacing to the runtime

Speculation

Speculating threads and memory
Isolate using thread private copies
Write back changes atomically

Well developed ideas in the Software
Transactional Memory (STM) field
We use a design similar to TL2

Dice et al: Transactional Locking II … DISC 2006

Speculation: Shadowing
Shared Memory

10

Lock(L) Å elided
…
X = Y + 1
…
Unlock(L)

Y:

Speculation: Shadowing
Shared Memory

10

Lock(L) Å elided
…
X = Y + 1
…
Unlock(L)

Y:

Metadata table

Hash (Address)
42

Speculation: Shadowing

10

Lock(L) Å elided
…
X = Y + 1
…
Unlock(L)

Y:

Metadata table

42
Hash (Address)

<Y V42 10>

Thread Private Log

Shared Memory

Speculation: Shadowing

10

Lock(L) Å elided
…
X = Y + 1
…
Unlock(L)

Y:

Metadata table

42

Hash (Address)

<Y V42 10>

Thread Private Log

99X:

<X V50 11>

50

Shared Memory

Speculation: Commit

Odd version numbers used to
represent locked objects
Manipulate with Compare and
Swap (CAS) for atomicity

Lock(L) Å elided
…
X = Y + 1
…
Unlock(L) Å commit

Dirty:

Clean:

<X V50 11>

<Y V42 10>

Commit (2PL): Lock, Verify, Write, Unlock

Speculation: Commit

1. 50Hash(X): 51CAS

Abort speculation and restart on conflict

Lock(L) Å elided
…
X = Y + 1
…
Unlock(L) Å commit

Dirty:

Clean:

<X V50 11>

<Y V42 10>

Commit (2PL): Lock, Verify, Write, Unlock

Speculation: Commit

1. 50Hash(X): 51CAS

2. Hash(Y): == 42 ?

Abort speculation and restart on conflict

Lock(L) Å elided
…
X = Y + 1
…
Unlock(L) Å commit

Dirty:

Clean:

<X V50 11>

<Y V42 10>

Commit (2PL): Lock, Verify, Write, Unlock

Speculation: Commit

1. 50Hash(X): 51CAS

2. Hash(Y): == 42 ?

3. X: 99
Write

11

Abort speculation and restart on conflict

Lock(L) Å elided
…
X = Y + 1
…
Unlock(L) Å commit

Dirty:

Clean:

<X V50 11>

<Y V42 10>

Commit (2PL): Lock, Verify, Write, Unlock

Speculation: Commit

1. 50Hash(X): 51CAS

2. Hash(Y): == 42 ?

3. X: 99
Write

11

4. 51 52
CAS

Abort speculation and restart on conflict

Hash(X):

Lock(L) Å elided
…
X = Y + 1
…
Unlock(L) Å commit

Dirty:

Clean:

<X V50 11>

<Y V42 10>

Commit (2PL): Lock, Verify, Write, Unlock

Coming Up ...

Speculation in software
Retaining lock semantics & behaviour
Implementation and evaluation
Interfacing to the run-time

Semantics

Programmers should see the same semantics
with SLE as when using locks
This means:

Lock acquisition must be allowed
No constraints on memory recycling

Solve this via insertion of Safe() calls:
Safe(O): while(metadata(O) is locked) wait;

We also want to ensure there’s no unexpected
(i.e. additional) blocking on other threads

Safe(O) must not wait for any other thread

Semantics – Application Locks

Acquisition of critical section locks
Need to reconcile with speculating threads

Thread 1 Thread 2Init: X = Y = 0

Lock(L) Å Elided
X = Y + 1
Unlock(L)

Lock(L) Å Acquired
Y = X + 1
Unlock(L)

Can X == Y ?

Semantics – Application Locks

Acquisition of critical section locks
Need to reconcile with speculating threads

Thread 1 Thread 2Init: X = Y = 0

Lock(L) Å Elided

X = Y + 1 {Y=0 ÆX = 1}

Unlock(L)

Lock(L) Å acquired

Y = X + 1 {X=0 ÆY=1}

Unlock(L)

X == Y == 1 !!!

Semantics – Application Locks

Basic idea: add a version number to locks
Lock is a shared memory object
Lock(L) Æ Lock(L) ; version(L)++
Unlock(L)Æ Version(L)++; Unlock(L)
Elide (L) Æ L.version even: Log (L.version)

Check for non speculative access
Use Safe(O) as defined before

Additional complexity to handle reader locks
No information required about other threads

Roy et al: Brief Announcement: A Transactional Approach to Lock Scalability… SPAA’08

Semantics – Privatisation

Memory no longer protected by a lock
Thread 1

Lock(L) Å Elided
node = List_head(list)
List_delete(node)
Unlock(L)
free (node)

Lock(L) Å Elided
node = List_head(list)
node.value = 42
Unlock(L)

Thread 2

Semantics – Privatisation

Memory no longer protected by a lock
Thread 1

Lock(L) Å Elided
node = List_head(list)
List_delete(node)
Unlock(L)
free (node)

Lock(L) Å Elided
node = List_head(list)
node.value = 42

Unlock(L)

Thread 2

Memory corruption

Unmanaged environmentÆ no Garbage Collector

Semantics – Privatisation

Memory no longer protected by a lock

OK! ☺

Thread 1

Lock(L) Å Elided
node = List_head(list)
List_delete(node)
Unlock(L)
Safe(node)
free (node)

Lock(L) Å Elided
node = List_head(list)
node.value = 42

Unlock(L)

Thread 2

Semantics – Avoiding Blocking

Locked metadata blocks non-speculative threads
Execution behaviour changes:

Can block on other threads even if not at Lock(L)

Lock(L) Å not elided
do stuff …
if(error) {
signal(FATAL_EXIT);
do cleanup

}
Unlock(L)

Lock(L) Å elided
do stuff …
Unlock(L)

Thread 1 Thread 2

Exit on SIG

Blocked on held metadata

Example from Apache webserver

Semantics – Avoiding Blocking
Harris et al: Revocable Locks for Non-Blocking Programming … PPoPP’05

We use revocable locks:
Allow lock to be revoked, displacing lock holder’s
execution to a special cleanup path
Call revoke(O, v) if Safe(O) finds O locked at version v

revoke(O, v) {
CAS(Metadata(O), v, v + 2);
signal(previous holder);

Æ At this point we own the metadata
}

commit{
…
Checkpoint: setjmp …
..
if(Metadata(O) == expected)
make changes (copy new data)

…
}

Semantics – Avoiding Blocking

Signal Handler:
longjmp

revoke(O, v) {
CAS(Metadata(O), v, v + 2);
signal(previous holder);

Æ At this point we own metadata
}

commit{
…
Checkpoint: setjmp …
..
if(Metadata(O) == expected)
make changes (copy new data)

…
}

Semantics – Avoiding Blocking

Signal Handler:
longjmp

How to synchronously signal ?
We use a custom signalling service implemented as a kernel module

revoke(O, v) {
CAS(Metadata(O), v, v + 2);
signal(previous holder);

Æ At this point we own the lock
}

commit{
…
Checkpoint: setjmp …
..
if(Metadata(O) == expected)
make changes (copy new data)

…
}

Semantics – Avoiding Blocking

Problem: we know nothing of target thread state
Can send an inter-processor interrupt (IPI)
Signal delivery on return to userspace

Semantics – Avoiding Blocking

Problem: we know nothing of target thread state
Can send an inter-processor interrupt (IPI)
Signal delivery on return to userspace

Source Thread Target Thread

Set signal pending in target

Cpu = last_running_on(target)

Count = IPI_count(Cpu)

Semantics – Avoiding Blocking

Problem: we know nothing of target thread state
Can send an inter-processor interrupt (IPI)
Signal delivery on return to userspace

Source Thread Target Thread

Set signal pending in target

Cpu = last_running_on(target)

Count = IPI_count(Cpu)

Send_IPI(Cpu)
Received

Kernel
to Userpace
transition

Semantics – Avoiding Blocking

Problem: we know nothing of target thread state
Can send an inter-processor interrupt (IPI)
Signal delivery on return to userspace

Source Thread Target Thread

Set signal pending in target

Cpu = last_running_on(target)

Count = IPI_count(Cpu)

Send_IPI(Cpu)

Until IPI_Count(Cpu) != Count

Received

Kernel
to Userpace
transitionOk for thread to be swapped out/migrated !

Coming Up ...

Speculation in software
Retaining lock semantics & behaviour
Implementation and evaluation
Interfacing to the run-time

Implementation

Runtime ~ 2000 lines of C code
x86 and Itanium
Targets C/C++ Applications

Extra features
Variable sized objects
Version number embedded in objects
Hash index

Per lock tuning parameters
Control cost of hash indexing
Control optimism

Evaluation

Performance
SLE removes synchronisation bottlenecks

Design goals
Preserve blocking behavior

STAMP

0

0.5

1

1.5

2

2.5

3

kmeans genome vacation ssca2 intruder labyrinth

Sp
ee

du
p

Benchmark

STAMP on a 16 way x86

Sequential

SLE

STAMP

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

kmeans genome vacation ssca2 intruder labyrinth

S
pe

ed
up

Benchmark

STAMP on a 16 way x86

Sequential

SLE

TL2

STAMP

With larger hash Fix hash function to be alignment agnostic

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

kmeans genome vacation ssca2 intruder labyrinth

S
pe

ed
up

Benchmark

STAMP on a 16 way x86 -- with SLE tuning

Sequential

SLE

TL2

Multiprogramming

0

1

2

3

4

5

6

1 2 4 8 16 32

R
un

tim
e

(n
or

m
al

is
ed

 to
 s

eq
ue

nt
ia

l)

Threads

STAMP:Vacation - 2 way x86

SLE

SLE-norestart

Coming Up ...

Speculation in software
Retaining lock semantics & behaviour
Implementation / evaluation
Interfacing to the run-time

Programmer Interface

Manual placement of
calls into SLE runtime

For declaring and
acquiring locks
For thread private
copies
For privatisation

Application synchronising
with locks

Source Code

Manual
Changes

Compile

Binary

SLE Runtime

Future Work: Automation
Application synchronising

with locks

Source Code

Manual
Changes

Compile

Binary

SLE Runtime

Compiler

Binary

Binary

SLE Runtime

Dynamic
Binary

Rewriting

STM aware
Compiler

Binary

SLE Runtime

Future Work: Profiling
Application synchronising

with locks

Source Code
Manual
Changes

Compile

Binary

SLE Runtime

Compiler

Binary

Profile using PinCS

Contended
Locks

with
DAP

Binary

SLE Runtime

Dynamic
Binary

Rewriting

STM aware
Compiler

Binary

SLE Runtime

PGO

Roy et al: Exploring the limits of disjoint
access parallelism … HotPar 2009

Conclusion

Software Lock Elision
Off the shelf microprocessors
STM to manage speculation

Retain semantics of locks
STM reconciles with locks
Block only when lock is held

Revocable locks in software

Backups

Atomic Blocks

Atomic blocks ≠ transactional memory
Just one of the (very popular) ways to expose
transactions to the programmer
Lock Elision subsumes atomic blocks
Atomic{ } ==
Lock(big global lock) { } Unlock(big global lock)

Could easily build atomic blocks over SLE
Approach followed for evaluations with STAMP

Related Work

Welc et al ECOOP 2008
Combine monitors and transactions in Java
Use the GC in the Java runtime to get around
privatisation problems
Do not optimise for reader locks
Do not retain blocking semantics

Rossbach et al SOSP 2007
Cxspinlock in the linux kernel
Lock elision, depends on HTM but declarative
Does not need to solve software specific problems but
would only run on a simulator ☺

Suitability for Lock Elision

Contention

Low (eg counter)

High

Disjoint Access Parallelism

Low

High (eg rbtree)

Pending Signals

SIGHUP < … < SIGALRM < … SIGUSR1

Semantics – Avoiding Blocking

Problem: we know nothing of target thread state
Can send an inter-processor interrupt (IPI)
Signal delivery on return to userspace

Source Thread Target Thread

Set signal pending in target

Cpu = last_running_on(target)

Count = IPI_count(Cpu)

Send_IPI(Cpu)

Until IPI_Count(Cpu) != Count

Received

Kernel
to Userpace
transitionOk for thread to be swapped out/migrated !

irqsave
irqs blocked

	A Runtime System for Software Lock Elision
	Motivation
	Critical Sections & Speculation
	Critical Sections & Speculation
	Critical Sections & Speculation
	Coming Up ...
	Speculation
	Speculation: Shadowing
	Speculation: Shadowing
	Speculation: Shadowing
	Speculation: Shadowing
	Speculation: Commit
	Speculation: Commit
	Speculation: Commit
	Speculation: Commit
	Speculation: Commit
	Coming Up ...
	Semantics
	Semantics – Application Locks
	Semantics – Application Locks
	Semantics – Application Locks
	Semantics – Privatisation
	Semantics – Privatisation
	Semantics – Privatisation
	Semantics – Avoiding Blocking
	Semantics – Avoiding Blocking
	Semantics – Avoiding Blocking
	Semantics – Avoiding Blocking
	Semantics – Avoiding Blocking
	Semantics – Avoiding Blocking
	Semantics – Avoiding Blocking
	Semantics – Avoiding Blocking
	Coming Up ...
	Implementation
	Evaluation
	STAMP
	STAMP
	STAMP
	Multiprogramming
	Coming Up ...
	Programmer Interface
	Future Work: Automation
	Future Work: Profiling
	Conclusion
	Backups
	Atomic Blocks
	Related Work
	Suitability for Lock Elision
	Pending Signals
	Semantics – Avoiding Blocking

